




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
昭通市重点中学2025年高二数学第二学期期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设曲线在点处的切线方程为,则()A.1 B.2 C.3 D.42.已知复数Z满足:,则()A. B. C. D.3.“”是“函数存在零点”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件4.设等差数列的前项和为.若,,则A.9 B.8 C.7 D.25.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第个“金鱼”图需要火柴棒的根数为()A. B.C. D.6.某教师有相同的语文参考书本,相同的数学参考书本,从中取出本赠送给位学生,每位学生本,则不同的赠送方法共有()A.种 B.种 C.种 D.种7.对于椭圆,若点满足,则称该点在椭圆内,在平面直角坐标系中,若点A在过点的任意椭圆内或椭圆上,则满足条件的点A构成的图形为()A.三角形及其内部 B.矩形及其内部 C.圆及其内部 D.椭圆及其内部8.已知集合A={x|x2>x,x∈R},A.{x|12≤x≤1} B.{x|12<x<2} C.{x|x≤19.为了得到函数的图象,可以将函数的图象()A.向右平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向左平移个单位长度10.一个质量均匀的正四面体型的骰子,其四个面上分别标有数字,若连续投掷三次,取三次面向下的数字分别作为三角形的边长,则其能构成钝角三角形的概率为()A. B. C. D.11.甲、乙两支球队进行比赛,预定先胜3局者获得比赛的胜利,比赛随即结束.结束除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是.假设各局比赛结果相互独立.则甲队以3:2获得比赛胜利的概率为()A. B. C. D.12.在平面几何里有射影定理:设三角形的两边,是点在上的射影,则.拓展到空间,在四面体中,面,点是在面内的射影,且在内,类比平面三角形射影定理,得出正确的结论是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.执行如图所示的程序框图,若输出的为1,则输入的的值等于_________.14.在中,角所对的边分别为,已知,则____.15.若C9x=16.已知直线(,是非零常数)与圆有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有__________条(用数字作答).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线的极坐标方程为,曲线的参数方程为(为参数)(Ⅰ)求直线的直角坐标方程和曲线的普通方程;(Ⅱ)若过且与直线垂直的直线与曲线相交于两点,,求.18.(12分)设椭圆的右焦点为,点,若(其中为坐标原点).(Ⅰ)求椭圆的方程.(Ⅱ)设是椭圆上的任意一点,为圆的任意一条直径(、为直径的两个端点),求的最大值.19.(12分)在平面直角坐标系xOy中,曲线M的参数方程为(t为参数,且t>0),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=4cosθ.(1)将曲线M的参数方程化为普通方程,并将曲线C的极坐标方程化为直角坐标方程;(2)求曲线M与曲线C交点的极坐标(ρ≥0,0≤θ<2π).20.(12分)数列满足.(Ⅰ)计算,,,并由此猜想通项公式;(Ⅱ)用数学归纳法证明(Ⅰ)中的猜想.21.(12分)在棱长为a的正方体ABCD-A1B1C1D1中,E是棱DD1的中点:(1)求点D到平面A1BE的距离;(2)在棱上是否存在一点F,使得B1F∥平面A1BE,若存在,指明点F的位置;若不存在,请说明理由.22.(10分)已知函数().(Ⅰ)当时,求曲线在处的切线方程;(Ⅱ)若对任意,恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
利用导数的几何意义得直线的斜率,列出a的方程即可求解【详解】因为,且在点处的切线的斜率为3,所以,即.故选:D本题考查导数的几何意义,考查运算求解能力,是基础题2、B【解析】
由复数的四则运算法则求出复数,由复数模的计算公式即可得到答案.【详解】因为,则,所以,故选B.本题考查复数的化简以及复数模的计算公式,属于基础题.3、A【解析】显然由于,所以当m<0时,函数f(x)=m+log2x(x≥1)存在零点;反之不成立,因为当m=0时,函数f(x)也存在零点,其零点为1,故应选A.4、C【解析】
利用等差数列的通项公式及前项和公式,求得和的值,即可求出.【详解】由,,,解得,,则,故选.本题主要考查等差数列的通项公式及前项和公式的应用。5、D【解析】
由图形间的关系可以看出,每多出一个小金鱼,则要多出6根火柴棒,则火柴棒的个数组成了一个首项是8,公差是6的等差数列,写出通项,求出第n项的火柴根数即可.【详解】由图形间的关系可以看出,每多出一个小金鱼,则要多出6根火柴棒,第一个图中有8根火柴棒组成,第二个图中有8+6个火柴棒组成,第三个图中有8+1×6个火柴组成,以此类推:组成n个系列正方形形的火柴棒的根数是8+6(n﹣1)∴第n个图中的火柴棒有6n+1.故选:D.本题考查归纳推理,考查等差数列的通项,解题的关键是看清随着小金鱼的增加,火柴的根数的变化趋势,属于基础题.6、B【解析】若本中有本语文和本数学参考,则有种方法,若本中有本语文和本参考,则有种方法,若本中有语文和本参考,则有种方法,若本都是数学参考书,则有一种方法,所以不同的赠送方法共有有,故选B.7、B【解析】
由在椭圆上,根据椭圆的对称性,则关于坐标轴和原点的对称点都在椭圆上,即可得结论.【详解】设在过的任意椭圆内或椭圆上,则,,即,由椭圆对称性知,都在任意椭圆上,∴满足条件的点在矩形上及其内部,故选:B.本题考查点到椭圆的位置关系.考查椭圆的对称性.由点在椭圆上,则也在椭圆上,这样过点的所有椭圆的公共部分就是矩形及其内部.8、C【解析】
求出集合A中的不等式的解集确定出A,找出A,B的交集后直接取补集计算【详解】∵A=B={x|∴A∩B={x|1<x<2则CR(A∩B)={x|x≤1故选C本题主要考查了不等式的解法及集合的交集,补集的运算,属于基础题.9、B【解析】
由三角函数的诱导公式可得,再结合三角函数图像的平移变换即可得解.【详解】解:由,即为了得到函数的图象,可以将函数的图象向右平移个单位长度,故选:B.本题考查了三角函数图像的平移变换及三角函数的诱导公式,属基础题.10、C【解析】
三次投掷总共有64种,只有长度为或223的三边能构成钝角三角形,由此计算可得答案.【详解】解:由题可知:三次投掷互不关联,所以一共有种情况:能构成链角三角形的三边长度只能是:或者是所以由长度为的三边构成钝角三角形一共有:种:由三边构成钝角三角形一共有:种:能构成钝角三角形的概率为.故选:C.本题考查了古典概型的概率求法,分类计数原理,属于基础题.11、B【解析】若是3:2获胜,那么第五局甲胜,前四局2:2,所以概率为,故选B.12、A【解析】
由平面图形到空间图形的类比推理中,一般是由点的性质类比推理到线的性质,由线的性质类比推理到面的性质,即可求解,得到答案.【详解】由已知在平面几何中,若中,是垂足,则,类比这一性质,推理出:若三棱锥中,面面,为垂足,则.故选A.本题主要考查了类比推理的应用,其中类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想),着重考查了推理能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2或【解析】
根据程序框图,讨论和两种情况,计算得到答案.【详解】当时,,故;当时,,故,解得或(舍去).故答案为:2或.本题考查了程序框图,意在考查学生的计算能力和理解能力.14、3【解析】
由正弦定理和已知,可以求出角的大小,再结合已知,可以求出的值,根据余弦定理可以求出的值.【详解】解:由正弦定理及得,,,,又,,,由余弦定理得:,即.本题考查了正弦定理、余弦定理、考查了数学运算能力.15、3或4【解析】
结合组合数公式结合性质进行求解即可.【详解】由组合数的公式和性质得x=2x﹣3,或x+2x﹣3=9,得x=3或x=4,经检验x=3或x=4都成立,故答案为:3或4.本题主要考查组合数公式的计算,结合组合数的性质建立方程关系是解决本题的关键.16、60【解析】
直线是截距式方程,因而不平行坐标轴,不过原点,考查圆上横坐标和纵坐标均为整数的点的个数,结合排列组合知识分类解答即可得到答案.【详解】可知直线的截距存在且不为0,即与坐标轴不垂直,不经过坐标原点,而圆上的公共点共有12个点,分别为:,,,,,,前8个点中,过任意一点的圆的切线满足,有8条;12个点中过任意两点,构成条直线,其中有4条直线垂直x轴,有4条垂直于y轴,还有6条过原点(圆上点的对称性),满足题设的直线有52条,综上可知满足题设的直线共有52+8=60条,故答案为60.本题主要考查排列组合知识,解决此类问题一定要做到不重不漏,意在考查学生的分析能力及分类讨论的数学思想,难度较大.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ),(Ⅱ)【解析】
(Ⅰ)根据极坐标与直角坐标的互化公式,即可求得直线的直角坐标方程,消去参数,即可求得曲线的普通方程;(Ⅱ)求得直线的参数方程,代入椭圆的方程,利用直线参数的几何意义,即可求解.【详解】(Ⅰ)由直线极坐标方程为,根据极坐标与直角坐标的互化公式,可得直线直角坐标方程:,由曲线的参数方程为(为参数),则,整理得,即椭圆的普通方程为.(Ⅱ)直线的参数方程为,即(为参数)把直线的参数方程代入得:,故可设,是上述方程的两个实根,则有又直线过点,故由上式及的几何意义得:.本题主要考查了极坐标方程与直角坐标方程,以及参数方程与普通方程的互化,以及直线参数的应用,着重考查了推理与运算能力,属于基础题.18、(Ⅰ)(Ⅱ)的最大值为.【解析】试题分析:(Ⅰ)结合题意可得所以,由可解得,故得椭圆方程.(Ⅱ)设圆的圆心为,由向量的知识可得,从而将求的最大值转化为求的最大值.设是椭圆上的任意一点,可得,所以当时,取得最大值,从而的最大值为.试题解析:(I)由题意知,,,所以由,得,解得,所以椭圆的方程为.(II)设圆的圆心为,则.从而求的最大值转化为求的最大值.设是椭圆上的任意一点,则,所以,又点,所以.因为,所以当时,取得最大值,所以的最大值为.点睛:圆锥曲线中最值(范围)问题的解决方法若题目的条件和结论能体现一种明确的函数关系,则可建立目标函数,再求这个函数的最值.常从以下方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;③利用基本不等式求出参数的取值范围;④利用函数的值域的求法,确定参数的取值范围.19、(1)曲线的普通方程为(或)曲线的直角坐标方程为.(2)交点极坐标为.【解析】
(1)先求出,再代入消元将曲线的参数方程化为普通方程,根据将,,.曲线的极坐标方程化为直角坐标方程;(2)先求曲线与曲线交点的直角坐标,再化为极坐标.(1)∵,∴,即,又,∴,∴或,∴曲线的普通方程为(或).∵,∴,∴,即曲线的直角坐标方程为.(2)由得,∴(舍去),,则交点的直角坐标为,极坐标为.本题考查曲线的普通方程、直角坐标方程的求法,考查两曲线交点的极坐标的求法,考查直角坐标方程、极坐标方程、参数方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.20、(Ⅰ)见解析;(Ⅱ)见解析.【解析】分析:(Ⅰ)计算出,由此猜想.(Ⅱ)利用数学归纳法证明猜想.详解:(Ⅰ),由此猜想;(Ⅱ)证明:当时,,结论成立;假设(,且),结论成立,即,当(,且)时,,即,所以,这就是说,当时,结论成立,根据(1)和(2)可知对任意正整数结论都成立,即.点睛:(1)本题主要考查不完全归纳法和数学归纳法,意在考查学生对这些知识的掌握水平和分析推理能力.(2)数学归纳法证明的关键是证明当n=k+1时命题成立,这时要利用已知和假设.21、(1);(2)存在点,为中点【解析】
(1)根据体积桥,首先求解出,进而根据解三角形的知识可求得,从而可构造关于所求距离的方程,解方程求得结果;(2)将平面延展,与底面交于且为中点,过点可作出的平行线,交于,为中点,即为所求的点;证明时,取中点,利用中位线可证得,从而可知平面,再利用平行四边形证得,利用线面平行判定定理可证得结论
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 厨房个人分管理制度
- 党史连廊管理制度
- 度假区财务管理制度
- 社区理疗工作室管理制度
- 水库大坝日常管理制度
- 货运企业订单管理制度
- 承包劳务怎样管理制度
- 物业杀虫跳蚤管理制度
- 沙石场公司财务管理制度
- 煤矿设备电缆管理制度
- 建筑施工-10S505柔性接口给水管道支墩规范图集
- DB2301T 193-2024林粮间作技术规程
- 向日葵菌核病研究
- 2024年秋期国家开放大学《西方社会学》形考任务1-4答案
- 通信工程专业生涯发展展示
- 昆明理工大学《物理化学A》2021-2022学年第一学期期末试卷
- 跨国电子信息企业并购
- 无人机航拍技术教案(完整版)
- 2型糖尿病分级诊疗
- 工程力学基础知识单选题100道及答案解析
- 《贫民窟的百万富翁》电影赏析
评论
0/150
提交评论