版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题01概率统计之二项分布一、解答题1.电子科技公司研制无人机,每架无人机组装后每周要进行次试飞试验,共进行次.每次试飞后,科研人员要检验其有否不良表现.若在这次试飞中,有不良表现不超过次,则该架无人机得分,否则得分.假设每架无人机次检验中,每次是否有不良表现相互独立,且每次有不良表现的概率均为.(1)求某架无人机在次试飞后有不良表现的次数的分布列和方差;(2)若参与试验的该型无人机有架,在次试飞试验中获得的总分不低于分,即可认为该型无人机通过安全认证.现有架无人机参与试飞试验,求该型无人机通过安全认证的概率是多少?2.某俱乐部的甲、乙两名运动员入围某乒乓球个人赛的半决赛后,将分别与其他俱乐部的两名运动员进行比赛,胜者可进入决赛.已知半决赛采用五局三胜制,即首先获胜三局的运动员胜出假设甲、乙每局比赛获胜的概率分别为,,且每局比赛的结果相互独立.(1)求该俱乐部提前锁定冠军的概率;(提前锁定冠军是指同一俱乐部的两名运动员均进入决赛);(2)在该俱乐部提前锁定冠军的条件下,记本次半决赛所进行的局数为,求的分布列和数学期望.3.现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用分别表示这4个人中去参加甲、乙游戏的人数,记,求随机变量的分布列.4.从2020年开始,学习强国平台开展了两项答题活动,一项为“争上游答题”,另一项为“双人对战”.“争上游答题”项目的规则如下:在一天内参与“争上游答题”活动,仅前两局比赛有积分,首局获胜得3分,次局获胜得2分,失败均得1分,每局比赛相互独立.“双人对战”项目的规则如下:在一天内参与“双人对战”活动,仅首局比赛有积分,获胜得2分,失败得1分,每局比赛相互独立.已知甲参加“争上游答题”活动,每局比赛获胜的概率为;甲参加“双人对战”活动,每局比赛获胜的概率为.(1)若甲连续4天参加“双人对战”活动,求甲这4天参加“双人对战”项目的总得分不低于6分的概率;(2)记甲某天参加两项活动(其中“争上游答题”项目参与两局以上)的总得分为,求的分布列和数学期望.5.甲、乙两队进行排球比赛,每场比赛采用“5局3胜制”(即有一支球队先胜3局即获胜,比赛结束).比赛排名采用积分制,积分规则如下:比赛中,以或取胜的球队积3分,负队积0分;以取胜的球队积2分,负队积1分,已知甲、乙两队比赛,甲每局获胜的概率为.(1)甲、乙两队比赛1场后,求甲队的积分的概率分布列和数学期望;(2)甲、乙两队比赛2场后,求两队积分相等的概率.6.为普及传染病防治知识,增强学生的疾病防范意识,提高自身保护能力,校委会在全校学生范围内,组织了一次传染病及个人卫生相关知识有奖竞赛(满分100分),竞赛奖励规则如下:得分在内的学生获三等奖,得分在内的学生获二等奖,得分在内的学生获一等奖,其它学生不得奖.教务处为了解学生对相关知识的掌握情况,随机抽取了100名学生的竞赛成绩,并以此为样本绘制了如图所示的频率分布表.竞赛成绩人数61218341686(1)从该样本中随机抽取2名学生的竞赛成绩,求这2名学生恰有一名学生获奖的概率;(2)若该校所有参赛学生的成绩近似地服从正态分布,利用所得正态分布模型解决以下问题:①若该校共有10000名学生参加了竞赛,试估计参赛学生中超过79分的学生人数(结果四舍五入到整数);②若从所有参赛学生中(参赛学生人数大于10000)随机抽取4名学生进行座谈,设其中竞赛成绩在64分以上的学生人数为,求随机变量的分布列和数学期望.附:若随机变量X服从正态分布,则,,.7.新疆棉以绒长、品质好、产量高著称于世.现有两类以新疆长绒棉为主要原材料的均码服装,A类服装为纯棉服饰,成本价为120元/件,总量中有30%将按照原价200元/件的价格销售给非会员顾客,有50%将按照8.5折的价格销售给会员顾客.B类服装为全棉服饰,成本价为160元/件,总量中有20%将按照原价300元/件的价格销售给非会员顾客,有40%将按照8.5折的价格销售给会员顾客.这两类服装剩余部分将会在换季促销时按照原价6折的价格销售给顾客,并能全部售完.(1)通过计算比较这两类服装单件收益的期望(收益=售价成本);(2)某服装专卖店店庆当天,全场A,B两类服装均以会员价销售.假设每位来店购买A,B两类服装的顾客只选其中一类购买,每位顾客限购1件,且购买了服装的顾客中购买A类服装的概率为.已知该店店庆当天这两类服装共售出5件,设X为该店当天所售服装中B类服装的件数,Y为当天销售这两类服装带来的总收益.求当时,n可取的最大值及Y的期望E(Y).8.2021年7月18日第30届全国中学生生物学竞赛在浙江省萧山中学隆重举行.为做好本次考试的评价工作,将本次成绩转化为百分制,现从中随机抽取了50名学生的成绩,经统计,这批学生的成绩全部介于40至100之间,将数据按照,,,,,,,,,,,分成6组,制成了如图所示的频率分布直方图.(1)求频率分布直方图中的值,并估计这50名学生成绩的中位数;(2)在这50名学生中用分层抽样的方法从成绩在,,,,,的三组中抽取了11人,再从这11人中随机抽取3人,记为3人中成绩在,的人数,求的分布列和数学期望;(3)转化为百分制后,规定成绩在,的为等级,成绩在,的为等级,其它为等级.以样本估计总体,用频率代替概率,从所有参加生物学竞赛的同学中随机抽取100人,其中获得等级的人数设为,记等级的人数为的概率为,写出的表达式,并求出当为何值时,最大?9.高尔顿板是英国生物统计学家高尔顿设计用来研究随机现象的模型,在一块木板上钉着若干排相互平行但相互错开的圆柱形小木块,小木块之间留有适当的空隙作为通道,前面挡有一块玻璃,让一个小球从高尔顿板上方的通道口落下,小球在下落的过程中与层层小木块碰撞,且等可能向左或向右滚下,最后掉入高尔顿板下方的某一球槽内.如图所示的小木块中,上面7层为高尔顿板,最下面一层为改造的高尔顿板,小球从通道口落下,第一次与第2层中间的小木块碰撞,以的概率向左或向右滚下,依次经过7次与小木块碰撞,最后掉入编号为1,2…,7的球槽内.例如小球要掉入3号球槽,则在前6次碰撞中有2次向右3次向左滚到第6层的第3个空隙处,再以的概率向左滚下,或在前6次碰撞中有1次向右4次向左滚到第6层的第2个空隙处,再以的概率向右滚下.(1)若进行一次高尔顿板试验,求小球落入第7层第6个空隙处的概率;(2)小明同学在研究了高尔顿板后,利用该图中的高尔顿板来到社团文化节上进行盈利性“抽奖”活动,8元可以玩一次高尔顿板游戏,小球掉入X号球槽得到的奖金为ξ元.其中ξ=|20﹣5X|.①求X的分布列:②高尔顿板游戏火爆进行,很多同学参加了游戏,你觉得小明同学能盈利吗?10.某市环保部门对该市市民进行垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如下表所示:组别男235151812女051010713(1)若将问卷得分不低于70分的市民称为“环保关注者”.请完成答题卡中的列联表.根据列联表的独立性检验,能否在犯错误的概率不超过0.05的前提下认为“环保关注者”与性别有关?(2)若将问卷得分不低于80分的市民称为“环保达人”,从我市所有“环保达人”中随机抽取5人,这5人中男性的人数记为X,求X的分布列及数学期望.附:0.100.050.0100.0050.001k2.7063.8416.6357.87910.828.11.一机床生产了个汽车零件,其中有个一等品、个合格品、个次品,从中随机地抽出个零件作为样本.用表示样本中一等品的个数.(1)若有放回地抽取,求的分布列;(2)若不放回地抽取,用样本中一等品的比例去估计总体中一等品的比例.①求误差不超过的的值;②求误差不超过的概率(结果不用计算,用式子表示即可)12.很多新手拿到驾驶证后开车上路,如果不遵守交通规则,将会面临扣分的处罚,为让广大新手了解驾驶证扣分新规定,某市交警部门结合机动车驾驶人有违法行为一次记12分、6分、3分、2分的新规定设置了一份试卷(满分100分),发放给新手解答,从中随机抽取了12名新手的成绩,成绩以茎叶图表示如图所示,并规定成绩低于95分的为不合格,需要加强学习,成绩不低于95分的为合格.(1)求这12名新手的平均成绩与方差;(2)将频率视为概率,根据样本估计总体的思想,若从该市新手中任选4名参加座谈会,用X表示成绩合格的人数,求X的分布列与数学期望.13.一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)若第一次击鼓出现音乐,求该盘游戏获得分的概率;(2)设每盘游戏获得的分数为,求的分布列;(3)玩三盘游戏,至少有一盘出现音乐的概率为多少?14.加强儿童青少年近视防控,促进儿童青少年视力健康是中央关心、群众关切、社会关注的“光明工程”.为了解青少年的视力与学习成绩间的关系,对某地区今年初中毕业生的视力和中考成绩进行调查.借助视力表测量视力情况,测量值5.0及以上为正常视力,5.0以下为近视.现从中随机抽取40名学生的视力测量值和中考成绩数据,得到视力的频率分布直方图如图:其中,近视的学生中成绩优秀与成绩一般的人数比例为,成绩一般的学生中视力正常与近视的人数比例为.(1)根据频率分布直方图的数据,将下面的列联表补充完整,并判断是否有90%的把握认为视力情况与学习成绩有关;学习成绩视力情况视力正常近视合计成绩优秀成绩一般合计(2)将频率视为概率,从该地区今年初中毕业生中随机抽取3人,设近视的学生数为,求的分布列与期望.附:,其中.0.1000.0500.0102.7063.8416.63515.某医院为筛查某病毒,需要检验血液是不是阳性,现有份血液样本,为了优化检验方法,现在做了以下两种检验方式:实验一:逐份检验,则需要检验次.实验二:混合检验,将其中(且)份血液样本分别取样混合在一起检验.若检验结果为阴性,这份血液样本全为阴性,因而这份血液样本只要检验一次就够了;若检验结果为阳性,为了明确这份血液样本究竟哪几份为阳性,就要对这份血液样本再逐份检验,此时这份血液样本的检验次数总共为.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为.现取其中(且)份血液样本,记釆用逐份检验方式,需要检验的这份样本的总次数为,釆用混合检验方式,需要检验的这份样本的总次数为.(1)若每份样本检验结果是阳性的概率为,以该样本的阳性概率估计全市的血液阳性概率,从全市人民中随机抽取3名市民,(血液不混合)记抽取到的这3名市民血液成阳性的市民个数为,求的分布列及数学期望(2)若每份样本检验结果是阳性的概率为,为使混合检验需要的检验的总次数的期望值比逐份检验的总次数的期望值更少,求的最大值.(,,)16.青年大学习是共青团中央组织的青年学习行动,共青团中央用习近平新时代中国特色社会主义思想武装全团、教育青年,把深入学习宣传贯彻党的十九大精神作为首要政治任务和核心业务,在全团部署实施“青年大学习”行动.某区为调在学生学习情况,对全区高中进行抽样调查,调查最近一周的周得分情况.如下茎叶图是抽查的A校和B校各30人得到的这周得分情况:根据成绩分为如下等级:成绩(单位:分)等级不合格合格良好优秀(1)根据茎叶图判断A校和B校中的哪个学校完成学习的效果更好,并说明理由(不要求计算);(2)现要从A校被抽查的成绩等级合格和不合格的8名同学中任选4人进行座谈,记其中所含不合格人数,求的分布列和期望;(3)若将所统计的这60人的频率作为概率,在全区的高中学生中任意抽取4人参加知识竞赛,记其中所含成绩优秀人数,求的分布列、期望和方差.17.2020新年伊始爆发的新冠疫情让广大民众意识到健康的重要性,云南省全面开展爱国卫生7个专项行动及健康文明生活的6条新风尚行动,其中“科学健身”鼓励公众每天进行60分钟的体育锻炼.某社区从居民中随机抽取了若干名,统计他们的平均每天锻炼时间(单位:分钟/天),得到的数据如下表:(所有数据均在0~120分钟/天之间)平均锻炼时间人数2739ab4515频率0.090.130.38c0.150.05(1)求,,的值;(2)为了鼓励居民进行体育锻炼,该社区决定对运动时间不低于分钟的居民进行奖励,为使30%的人得到奖励,试估计的取值?(3)在第(2)问的条件下,以频率作为概率,在该社区得到奖励的人中随机抽取4人,设这4人中日均锻炼时间不低于80分钟的人数为,求的分布列和数学期望.18.某高中随机抽取部分高一学生调查其上学路上所需的时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的范围是,样本数据分组为(1)求直方图中的值;(2)如果上学路上所需时间不少于1小时的学生可申请在学校住宿,若招生1200名,请估计新生中有多少名学生可以申请住宿;(3)从学校的高一学生中任选4名学生,这4名学生中上学路上所需时间少于40分钟的人数记为,求的分布列和数学期望.(以直方图中的频率作为概率)19.某同学参加篮球投篮测试,罚球位上定位投中的概率为,三步篮投中的概率为,测试时罚球位上投篮投中得2分,三步篮投中得1分,不中得0分,每次投篮的结果相互独立,该同学罚球位上定位投篮1次,三步上篮2次.(1)求“该同学罚球位定位投篮投中且三步篮投中1次”的概率;(2)求该同学的总得分X的分布列和数学期望.20.在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期.一研究团队统计了某地区1000名患者的相关信息,得到如下表格:潜伏期/天人数85205310250130155(1)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表,请将列联表补充完整,并根据列联表判断是否有95%的把握认为潜伏期与患者年龄有关;潜伏期天潜伏期天总计50岁以上(含50岁)6510050岁以下总计200(2)以这1000名患者的潜伏期不超过6天的频率,代替该地区1名患者潜伏期不超过6天发生的概率,每名患者的潜伏期是否超过6天相互独立,为了深入研究,该研究团队随机调查了该地区的3名患者,设该3名患者中潜伏期不超过6天的人数为,求随机变量的分布列和数学期望.附:0.050.0250.0103.8415.0246.635,其中.21.为了提高学生身体素质,引导学生广泛发展其体育爱好,某大学每年会举办一次盛大的羽毛球比赛,其赛制如下:采用七局四胜制,比赛过程中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年基坑工程安全技术试卷与答案
- 2025年江苏省教师职称考试(理论知识)在线模拟题库及答案
- 2025年检验检测机构资质认定考试题及参考答案
- 2025 年健康素养(用眼保健方法)知识试题答案集
- 2025年铌铁合作协议书
- 全员质量管理责任落实与考核方案
- 建筑项目后期维护管理方案
- 2026-2031年中国液晶体温计行业市场发展趋势与前景展望战略研究报告
- 工业园区屋顶分布式光伏及储能项目建设工程方案
- 2025年手持云台项目建议书
- 破产案件相关知识培训课件
- 人工智能赋能美妆行业消费升级下的市场趋势研究报告
- 儿科口腔护理知识培训课件
- 【一年级上】【数学】期中家长会《一年级得稳稳的走》【课件】
- 2025-2030中国水性涂料替代油性涂料分析报告
- 非遗宋锦课件
- 2025至2030中国聚烯烃弹性体(POE)行业市场深度调研及发展策略与投资机会报告
- 2024年石河子大学公开招聘辅导员笔试题含答案
- 12345政务热线培训
- 2025煤矿安全规程解读
- 2025至2030中国体育和体育场咨询服务行业项目调研及市场前景预测评估报告
评论
0/150
提交评论