




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列计算正确的是()A. B. C. D.2.下列说法正确的是()A.(﹣3)2的平方根是3 B.=±4C.1的平方根是1 D.4的算术平方根是23.如图,在中,平分交于点,平分,,交于点,若,则()A.75 B.100 C.120 D.1254.如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为Pn,则P2020的坐标是()A.(5,3) B.(3,5) C.(0,2) D.(2,0)5.△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动。同时,点Q在线段CA上由C点向A点运动。若点Q的运动速度为v厘米/秒,则当△BPD与△CQP全等时,v的值为()A.2 B.5 C.1或5 D.2或36.已知三角形的三边长为,如果,则是()A.等边三角形 B.等腰直角三角形 C.等腰三角形 D.直角三角形7.甲从A地到B地要走m小时,乙从B地到A地要走n小时,若甲、乙二人同时从A、B两地出发,经过几小时相遇()A.(m+n)小时 B.小时 C.小时 D.小时8.下列三组线段能组成三角形的是()A.1,2,3 B.1,2,4 C.3,4,5 D.3,3,69.已知为整数,且为正整数,求所有符合条件的的值的和()A.0 B.12 C.10 D.810.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A. B. C. D.11.下列分式中,最简分式是()A. B. C. D.12.若把分式中的x、y都扩大4倍,则该分式的值()A.不变 B.扩大4倍 C.缩小4倍 D.扩大16倍二、填空题(每题4分,共24分)13.在Rt△ABC中,,,,则=_____.14.如图,中,一内角和一外角的平分线交于点连结,_______________________.
15.如图,依据尺规作图的痕迹,计算∠α=________°.16.如图,两个四边形均为正方形,根据图形的面积关系,写出一个正确的等式__________.17.的绝对值是______.18.已知P(a,b),且ab<0,则点P在第_________象限.三、解答题(共78分)19.(8分)如图①,一个长为,宽为的长方形,沿途中的虚线用剪刀均匀的分成四个小长方形,然后按图②的形状拼成一个正方形.(1)观察图②,请用两种不同的方法求图②中阴影部分的面积.方法1:________________________________________(只列式,不化简)方法2:________________________________________(只列式,不化简)(2)请写出三个式子之间的等量关系:_______________________________.(3)根据(2)题中的等量关系,解决如下问题:若,求的值.20.(8分)阅读与思考:因式分解----“分组分解法”:分组分解法指通过分组分解的方式来分解用提公因式法和公式法无法直接分解的多项式,比如,四项的多项式一般按照“两两”分组或“三一”分组进行分组分解.分析多项式的特点,恰当的分组是分组分解法的关键.例1:“两两”分组:我们把和两项分为一组,和两项分为一组,分别提公因式,立即解除了困难.同样.这道题也可以这样做:例2:“三一”分组:我们把,,三项分为一组,运用完全平方公式得到,再与-1用平方差公式分解,问题迎刃而解.归纳总结:用分组分解法分解因式的方法是先恰当分组,然后用提公因式法或运用公式法继续分解.请同学们在阅读材料的启发下,解答下列问题:(1)分解因式:①;②(2)若多项式利用分组分解法可分解为,请写出,的值.21.(8分)如图,AC⊥BD,DE交AC于E,AB=DE,∠A=∠D.求证:AC=AE+BC.22.(10分)已知,,求下列代数式的值:(1);(2).23.(10分)已知:如图,,.求证:.(写出证明过程及依据)24.(10分)如图,在▱ABCD中,E、F分别是BC、AD边上的点,且∠1=∠1.求证:四边形AECF是平行四边形.25.(12分)如图,AD
为
△ABC
的角平分线,DE⊥AB
于点
E,DF⊥AC
于点
F,连接
EF
交
AD
于点
O.(1)求证:AD垂直平分EF;(2)若∠BAC=,写出DO与AD之间的数量关系,不需证明.26.已知.求作:,使(1)如图1,以点为圆心,任意长为半径画弧,分别交,于点,;(2)如图2,画一条射线,以点为圆心,长为半径画弧,交于点;(3)以点为圆心,长为半径画弧,与第2步中所画的弧交于点;(4)过点画射线,则.根据以上作图步骤,请你证明.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据合并同类项、同底数幂的乘除运算可进行排除选项.【详解】A、,故错误;B、,故错误;C、,故错误;D、,故正确;故选D.本题主要考查合并同类项及同底数幂的乘除运算,熟练掌握合并同类项及同底数幂的乘除运算是解题的关键.2、D【解析】根据平方根和算术平方根的定义解答即可.【详解】A、(﹣3)2的平方根是±3,故该项错误;B、,故该项错误;C、1的平方根是±1,故该项错误;D、4的算术平方根是2,故该项正确.故选D.本题考查了平方根、算术平方根的定义,解决本题的关键是熟记平方根、算术平方根的定义.3、B【分析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理求得CE1+CF1=EF1.【详解】∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE1+CF1=EF1=2.故选:B本题考查角平分线的定义,直角三角形的判定以及勾股定理的运用.4、D【分析】根据轴对称的性质分别写出点P1的坐标为、点P2的坐标、点P3的坐标、点P4的坐标,从中找出规律,根据规律解答.【详解】解:由题意得,点P1的坐标为(5,3),点P2的坐标为(3,5),点P3的坐标为(0,2),点P4的坐标为(2,0),点P5的坐标为(5,3),2020÷4=505,∴P2020的坐标为(2,0),故选:D.本题主要考查了点的坐标、坐标与图形变化−−对称,正确找出点的坐标的变化规律是解题的关键.5、D【分析】此题要分两种情况:①当BD=PC时,△BPD与△CQP全等,计算出BP的长,进而可得运动时间,然后再求v;②当BD=CQ时,△BDP≌△QCP,计算出BP的长,进而可得运动时间,然后再求v.【详解】解:当BD=PC时,△BPD与△CQP全等,∵点D为AB的中点,∴BD=AB=6cm,∵BD=PC,∴BP=8-6=2(cm),∵点P在线段BC上以2厘米/秒的速度由B点向C点运动,∴运动时间时1s,∵△DBP≌△PCQ,∴BP=CQ=2cm,∴v=2÷1=2;当BD=CQ时,△BDP≌△QCP,∵BD=6cm,PB=PC,∴QC=6cm,∵BC=8cm,∴BP=4cm,∴运动时间为4÷2=2(s),∴v=6÷2=1(m/s).故v的值为2或1.故选择:D.此题主要考查了全等三角形的判定,关键是要分情况讨论,不要漏解,掌握全等三角形的判定方法:SSS、SAS、ASA、AAS、HL.6、C【分析】根据非负数之和等于0,则每一个非负数都为0,求出a,b,c的值,即可判断三角形的形状.【详解】∵,,且∴,解得∴,又,∴△ABC不是直角三角形,∴△ABC为等腰三角形故选C.本题考查了非负数的性质与等腰三角形的判定,熟练掌握二次根式与绝对值的非负性是解题的关键.7、D【解析】假设甲、乙经过x小时相遇,令A、B距离为a,甲从A地到B地要走m小时,则甲的速度为;乙从B地到A地要走n小时,则乙的速度为根据题目中的等量关系列出方程求解即可.【详解】假设甲、乙经过x小时相遇,令A、B距离为a,甲从A地到B地要走m小时,则甲的速度为;乙从B地到A地要走n小时,则乙的速度为根据题意,列方程解得故选:D.本题主要考查分式方程的应用,解题的关键是分析题意,找出题目中的等量关系.8、C【分析】根据三角形的三边关系逐一判断即可.【详解】A.1+2=3,不符合三角形的三边关系,不能构成三角形,故本选项不符合题意;B.1+2<4,不符合三角形的三边关系,不能构成三角形,故本选项不符合题意;C.3+4>5,符合三角形的三边关系,能构成三角形,故本选项符合题意;D.3+3=6,不符合三角形的三边关系,不能构成三角形,故本选项不符合题意.故选C.此题考查的是判断三条线段是否能构成三角形,掌握三角形的三边关系是解决此题的关键.9、C【分析】先把化简,再根据要求带入符合要求的数,注意检查分母是否为零.【详解】原式===.因为a为整数且为整数,所以分母或,解得a=4,2,6,0,.检验知a=2时原式无意义,应舍去,a的值只能为4,6,0.所以所有符合条件的a的值的和为4+6+0=10.故选C.本题考查了分式的计算和化简.解决这类题目关键是把握好通分与约分,分式加减的本质是通分,乘除的本质是约分.同时注意在进行运算前要尽量保证每个分式最简.10、D【解析】分析:根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.详解:设乘公交车平均每小时走x千米,根据题意可列方程为:.故选D.点睛:此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,列出方程即可.11、A【解析】试题分析:选项A为最简分式;选项B化简可得原式==;选项C化简可得原式==;选项D化简可得原式==,故答案选A.考点:最简分式.12、A【分析】把x换成4x,y换成4y,利用分式的基本性质进行计算,判断即可.【详解】,∴把分式中的x,y都扩大4倍,则分式的值不变.故选:A.本题考查了分式的基本性质.解题的关键是掌握分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.二、填空题(每题4分,共24分)13、1【分析】在Rt△ABC中,∠C=90°,则AB2=AC2+BC2,根据题目给出的AB,AC的长,则根据勾股定理可以求BC的长.【详解】∵AB=13,AC=12,∠C=90°,
∴BC=1.
故答案为:1.本题考查了勾股定理在直角三角形中的运用,本题中正确的根据勾股定理求值是解题的关键.14、1°【分析】过D作,DF⊥BE于F,DG⊥AC于G,DH⊥BA,交BA延长线于H,由BD平分∠ABC,可得∠ABD=∠CBD,DH=DF,同理CD平分∠ACE,∠ACD=∠DCF=,DG=DF,由∠ACE是△ABC的外角,可得2∠DCE=∠BAC+2∠DBC①,由∠DCE是△DBC的外角,可得∠DCE=∠CDB+∠DBC②,两者结合,得∠BAC=2∠CDB,则∠HAC=180º-∠BAC,在证AD平分∠HAC,即可求出∠CAD.【详解】过D作,DF⊥BE于F,DG⊥AC于G,DH⊥BA,交BA延长线于H,∵BD平分∠ABC,∴∠ABD=∠CBD=∠ABC,DH=DF,∵CD平分∠ACE,∴∠ACD=∠DCF=∠ACE,DG=DF,∵∠ACE是△ABC的外角,∴∠ACE=∠BAC+∠ABC,∴2∠DCE=∠BAC+2∠DBC①,∵∠DCE是△DBC的外角,∴∠DCE=∠CDB+∠DBC②,由①②得,∠BAC=2∠CDB=2×24º=48º,∴∠HAC=180º-∠BAC=180º-48º=132º,∵DH=DF,DG=DF,∴DH=DG,∵DG⊥AC,DH⊥BA,AD平分∠HAC,∠CAD=∠HAD=∠HAC=×132º=1º.故答案为:1.本题考查角的求法,关键是掌握点D为两角平分线交点,可知AD为角平分线,利用好外角与内角的关系,找到∠BAC=2∠CDB是解题关键.15、1.【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【详解】如图,∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DAC=∠ACB=68°.
∵由作法可知,AF是∠DAC的平分线,
∴∠EAF=∠DAC=34°.
∵由作法可知,EF是线段AC的垂直平分线,
∴∠AEF=90°,
∴∠AFE=90°-34°=1°,
∴∠α=1°.
故答案为:1.16、【分析】根据图形的分割前后面积相等,分别用大正方形的面积等于分割后四个小的图形的面积的和,即可得出结论.【详解】如图可知,把大正方形分割成四部分,大正方形的边长为,大正方形面积为,两个小正方形的面积分别为、,两个长方形的面积相等为,所以有,故答案为:..分割图形,找到分割前后图形的关系,利用面积相等,属于完全平方公式的证明,找到、的关系式,即可得出结论.17、【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:-的绝对值是.故答案为.本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.18、二,四【分析】先根据ab<0确定a、b的正负情况,然后根据各象限点的坐标特点即可解答.【详解】解:∵ab<0∴a>0,b<0或b>0,a<0∴点P在第二、四象限.故答案为二,四.本题主要考查了各象限点的坐标特点,掌握第一象限(+,+)、第二象限(-,+)、第三象限(-,-)、第四象限(+,-)是解答本题的关键.三、解答题(共78分)19、(1);(2);(3)1【分析】(1)方法1:表示出阴影部分小正方形的的边长,再根据正方形的面积公式表示出面积即可.方法2:根据阴影部分的面积等于大正方形的面积减去四个小长方形的面积即可.(2)根据题(1)列出等量关系即可.(3)将代入(2)题即可求出.【详解】解:(1)(顺序可颠倒)(2)(3)∵∴此题中,则本题考查的是完全平方公式的几何背景,熟练地掌握完全平方公式的几何背景是解本题的关键.20、(1)①(a﹣b)(a+3);②(x﹣y+3)(x﹣y﹣3);(1)a=4,b=1.【分析】(1)①选用“两两分组”法分解因式即可;②选用“三一分组”法分解因式即可;(1)利用多项式乘法法则将展开,然后对应多项式即可求出答案.【详解】解:(1)①②(1)∵比较系数可得a=4,b=1.本题主要考查因式分解和多项式乘法,掌握因式分解法是解题的关键.21、见解析.【分析】由“SAS”可证△ABC≌△DEC,可得BC=CE,即可得结论.【详解】证明:∵AB=DE,∠A=∠D,∠ACB=∠DCE=90°∴△ABC≌△DEC(SAS)∴BC=CE,∵AC=AE+CE∴AC=AE+BC本题考查了全等三角形的判定和性质,熟练运用全等三角形的性质是本题的关键.22、(1);(2)或.【分析】(1)把两边平方,展开,即可求出的值;(2)先求出的值,再开方求得的值,再对原式分解因式,再整体代入求出即可.【详解】(1)∵,,
∴,
∴,
∴,
∴;(2)∵,,∴故答案为:或.本题考查了完全平方公式和平方差的应用,能灵活运用公式进行变形是解此题的关键.23、证明见解析.【分析】由EG∥FH得∠OEG=∠OFH,从而得∠AEF=∠DFE,进而得AB∥CD,即可得到结论.【详解】∵EG∥FH(已知),∴∠OEG=∠OFH(两直线平行,内错角相等),∵∠1=∠2(已知),∴∠OEG+∠1=∠OFH+∠2(等式的基本性质),即∠AEF=∠DFE,∴AB∥CD(内错角相等,两直线平行),∴∠BEF+∠DFE=180°(两直线平行,同旁内角互补).本题主要考查平行线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年制造业数字化协同管理在供应链协同产业协同效应最大化中的应用报告
- Unit3+Getting+along+with+others(语法课件)高一英语单元核心语法词汇精讲课件(译林版2020必修第一册)
- Unit+1+Food+matters+Comfort+Food+Reading+高中英语牛津译林版(2020)选择性必修第一册
- 2025秋教科版科学二年级上册教学课件:第一单元第3课 家里的物品
- Unit 3 Same or Different Section A (1a-1e) Pronunciation课件-2025-2026学年人教版八年级英语上册
- 四川建筑安全员c证考试试题及答案
- 孙悟空题目及答案
- 淘宝处罚考试题及答案
- 典当管理办法动产
- 养生月饼管理办法
- 2025年天津市房屋租赁合同范本
- 道德与法治教师考试试题及答案
- 2025年阿拉善盟直事业单位专业人才预约引进笔试真题含答案
- 2025年检察院书记员考试真题(有答案)
- 2025年公路交通运输技能考试-厂内机动车辆检验员考试习题集历年参考题库含答案解析(5套100道单选题合辑)
- 2024年云南省元江哈尼族彝族傣族自治县人民医院公开招聘护理工作人员试题带答案详解
- (正式版)HGT 22820-2024 化工安全仪表系统工程设计规范
- 《海上风电场工程测量规程》(NB-T 10104-2018)
- 附件9:未取得国外国籍的声明
- 山桐子的综合利用价值及育苗造林技术
- 土的工程分类和不均匀曲率系数计算表(2007规程)
评论
0/150
提交评论