2024四川省万源市中考数学考前冲刺练习试题附参考答案详解【黄金题型】_第1页
2024四川省万源市中考数学考前冲刺练习试题附参考答案详解【黄金题型】_第2页
2024四川省万源市中考数学考前冲刺练习试题附参考答案详解【黄金题型】_第3页
2024四川省万源市中考数学考前冲刺练习试题附参考答案详解【黄金题型】_第4页
2024四川省万源市中考数学考前冲刺练习试题附参考答案详解【黄金题型】_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省万源市中考数学考前冲刺练习试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、在中,AB,CD为两条弦,下列说法:①若,则;②若,则;③若,则弧AB=2弧CD;④若,则.其中正确的有(

)A.1个 B.2个 C.3个 D.4个2、如图1,矩形中,点为的中点,点沿从点运动到点,设,两点间的距离为,,图2是点运动时随变化的关系图象,则的长为(

)A. B. C. D.3、正方形的边长为4,若边长增加x,那么面积增加y,则y关于x的函数表达式为(

)A. B. C. D.4、从下列命题中,随机抽取一个是真命题的概率是()(1)无理数都是无限小数;(2)因式分解;(3)棱长是的正方体的表面展开图的周长一定是;(4)弧长是,面积是的扇形的圆心角是.A. B. C. D.15、如图,矩形ABCD中,AD=2,AB=,对角线AC上有一点G(异于A,C),连接DG,将△AGD绕点A逆时针旋转60°得到△AEF,则BF的长为(

)A. B.2 C. D.2二、多选题(5小题,每小题3分,共计15分)1、下列关于x的一元二次方程中,没有两个不相等的实数根的方程是(

)A. B. C. D.2、下表时二次函数y=ax2+bx+c的x,y的部分对应值:…………则对于该函数的性质的判断中正确的是()A.该二次函数有最大值B.不等式y>﹣1的解集是x<0或x>2C.方程y=ax2+bx+c的两个实数根分别位于﹣<x<0和2<x<之间D.当x>0时,函数值y随x的增大而增大3、下列命题中不正确的命题有(

)A.方程kx2-x-2=0是一元二次方程 B.x=1与方程x2=1是同解方程C.方程x2=x与方程x=1是同解方程 D.由(x+1)(x-1)=3可得x+1=3或x-1=34、等腰三角形三边长分别为a,b,3,且a,b是关于x的一元二次方程x2﹣8x﹣1+m=0的两根,则m的值为()A.15 B.16 C.17 D.185、如图在四边形中,,,,为的中点,以点为圆心、长为半径作圆,恰好使得点在圆上,连接,若,则下列说法中正确的是(

)A.是劣弧的中点 B.是圆的切线C. D.第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、若二次函数的顶点在x轴上,则__________.2、一个直角三角形的两条直角边相差5cm,面积是7cm2,则其斜边的长是___.3、如图,四边形ABCD为⊙O的内接正四边形,△AEF为⊙O的内接正三角形,连接DF.若DF恰好是同圆的一个内接正多边形的一边,则这个正多边形的边数为_____.4、如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是_______(结果用含、代数式表示).5、在平面直角坐标系中,将点A先向右平移4个单位,再向下平移6个单位得到点B,如果点A和点B关于原点对称,那么点A的坐标是____________.四、解答题(6小题,每小题10分,共计60分)1、为帮助人民应对疫情,某药厂下调药品的价格某种药品经过连续两次降价后,由每盒元下调至元,已知每次下降的百分率相同.(1)求这种药品每次降价的百分率是多少?(2)已知这种药品的成本为元,若按此降价幅度再一次降价,药厂是否亏本?2、如图,已知二次函数的图象经过点.(1)求的值和图象的顶点坐标.

(2)点在该二次函数图象上.

①当时,求的值;②若到轴的距离小于2,请根据图象直接写出的取值范围.3、如图①已知抛物线的图象与轴交于、两点(在的左侧),与的正半轴交于点,连结;二次函数的对称轴与轴的交点.(1)抛物线的对称轴与轴的交点坐标为,点的坐标为_____(2)若以为圆心的圆与轴和直线都相切,试求出抛物线的解析式:(3)在(2)的条件下,如图②是的正半轴上一点,过点作轴的平行线,与直线交于点与抛物线交于点,连结,将沿翻折,的对应点为’,在图②中探究:是否存在点,使得’恰好落在轴上?若存在,请求出的坐标:若不存在,请说明理由.4、已知:如图所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点到达终点后,另外一点也随之停止运动.(1)如果P、Q分别从A、B同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.5、如图,已知点在上,点在外,求作一个圆,使它经过点,并且与相切于点.(要求写出作法,不要求证明)6、已知关于的二次函数.(1)求证:不论为何实数,该二次函数的图象与轴总有两个公共点;(2)若,两点在该二次函数的图象上,直接写出与的大小关系;(3)若将抛物线沿轴翻折得到新抛物线,当时,新抛物线对应的函数有最小值3,求的值.-参考答案-一、单选题1、A【解析】【分析】根据圆心角、弧、弦之间的关系解答即可.【详解】①若,则,正确;②若,则,故不正确;③由不能得到弧AB=2弧CD,故不正确;④若,则,错误.故选A.【考点】本题考查了圆心角、弧、弦之间的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对的其余各组量都分别相等.也考查了等腰三角形的性质.2、C【解析】【分析】先利用图2得出当P点位于B点时和当P点位于E点时的情况,得到AB和BE之间的关系以及,再利用勾股定理求解即可得到BE的值,最后利用中点定义得到BC的值.【详解】解:由图2可知,当P点位于B点时,,即,当P点位于E点时,,即,则,∵,∴,即,∵∴,∵点为的中点,∴,故选:C.【考点】本题考查了学生对函数图象的理解与应用,涉及到了勾股定理、解一元二次方程、中点的定义等内容,解决本题的关键是能正确理解题意,能从图象中提取相关信息,能利用勾股定理建立方程等,本题蕴含了数形结合的思想方法.3、C【解析】【分析】加的面积=新正方形的面积-原正方形的面积,把相关数值代入化简即可.【详解】解:∵新正方形的边长为x+4,原正方形的边长为4,∴新正方形的面积为(x+4)2,原正方形的面积为16,∴y=(x+4)2-16=x2+8x,故选:C.【考点】本题考查列二次函数关系式;得到增加的面积的等量关系是解决本题的关键.4、C【解析】【分析】分别判断各命题的真假,再利用概率公式求解.【详解】解:(1)无理数都是无限小数,是真命题,(2)因式分解,是真命题,(3)棱长是的正方体的表面展开图的周长一定是,是真命题,(4)设扇形半径为r,圆心角为n,∵弧长是,则=,则,∵面积是,则=,则360×240,则,则n=3600÷24=150°,故扇形的圆心角是,是假命题,则随机抽取一个是真命题的概率是,故选C.【考点】本题考查了命题的真假,概率,扇形的弧长和面积,无理数,因式分解,正方体展开图,知识点较多,难度一般,解题的关键是运用所学知识判断各个命题的真假.5、A【解析】【分析】过点F作FH⊥BA交BA的延长线于点H,则∠FHA=90°,△AGD绕点A逆时针旋转60°得到△AEF,得∠FAD=60°,AF=AD=2,又由四边形ABCD是矩形,∠BAD=90°,得到∠FAH=30°,在Rt△AFH中,FH=AF=1,由勾股定理得AH=,得到BH=AH+AB=2,再由勾股定理得BF=.【详解】解:如图,过点F作FH⊥BA交BA的延长线于点H,则∠FHA=90°,∵△AGD绕点A逆时针旋转60°得到△AEF∴∠FAD=60°,AF=AD=2,∵四边形ABCD是矩形∴∠BAD=90°∴∠BAF=∠FAD+∠BAD=150°∴∠FAH=180°-∠BAF=30°在Rt△AFH中,FH=AF=1由勾股定理得AH=在Rt△BFH中,FH=1,BH=AH+AB=2由勾股定理得BF=故BF的长.故选:A【考点】本题考查了图形的旋转,矩形的性质,含30度角的直角三角形的性质,勾股定理等知识,解决此题的关键在于作出正确的辅助线.二、多选题1、ABC【解析】【分析】根据根的判别式Δ=b2-4ac的值的符号,可以判定个方程实数根的情况,注意排除法在解选择题中的应用.【详解】解:A、∵Δ=b2-4ac=02-4×1×4=-16<0,∴此方程没有实数根,故本选项符合题意;B、∵Δ=b2-4ac=(-4)2-4×1×4=0,∴此方程有两个相等的实数根,故本选项符合题意;C、∵Δ=b2-4ac=12-4×1×3=-11<0,∴此方程没有实数根,故本选项符合题意;D、∵Δ=b2-4ac=22-4×1×(-1)=8>0,∴此方程有两个不相等的实数根,故本选项不符合题意;故选:ABC.【考点】本题考查了一元二次方程根的判别式的知识.此题比较简单,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:①当Δ>0时,方程有两个不相等的两个实数根;②当Δ=0时,方程有两个相等的两个实数根;③当Δ<0时,方程无实数根.2、BC【解析】【分析】由图表可得二次函数y=ax2+bx+c的对称轴为直线x=1,a>0,即可判断A,D不正确,由图表可直接判断B,C正确.【详解】解:∵当x=0时,y=-1;当x=2时,y=-1;当x=,y=;当x=,y=;∴二次函数y=ax2+bx+c的对称轴为直线x=1,x>1时,y随x的增大而增大,x<1时,y随x的增大而减小.∴a>0即二次函数有最小值则A,D错误由图表可得:不等式y>-1的解集是x<0或x>2;由图表可得:方程ax2+bx+c=0的两个实数根分别位于-<x<0和2<x<之间;所以选项B,C正确,故选:BC.【考点】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的最值,理解图表中信息是本题的关键.3、ABCD【解析】【分析】根据方程、方程的解的有关定义以及解方程等知识点逐项判断即可.【详解】解:A.方程kx2−x−2=0当k≠0时才是一元二次方程,故错误;B.x=1与方程x2=1不是同解方程,故错误;C.方程x2=x与方程x=1不是同解方程,故错误;D.由(x+1)(x−1)=3可得x=±2,故错误.故选:ABCD.【考点】本题主要考查了一元二次方程的定义、解一元二次方程、同解方程等知识点,掌握解一元二次方程的方法是解答本题的关键.4、BC【解析】【分析】分3为底边长或腰长两种情况考虑:当3为底时,由a=b及a+b=8即可求出a、b的值,利用三角形的三边关系确定此种情况存在,再利用根与系数的关系即可求得的值;当3为腰时,则a、b中有一个为3,a+b=8即可求出b,再利用根与系数的关系即可求得的值.【详解】解:当3为腰时,此时a=3或b=3,把x=3代入方程x2﹣8x﹣1+m=0得9﹣24﹣1+m=0,解得m=16,此时方程为x2﹣8x+15=0,解得x1=3,x2=5;当3为底时,此时a=b,Δ=82﹣4(﹣1+m)=0,解得m=17,此时方程为x2﹣8x+16=0,解得x1=x2=4;综上所述,m的值为16或17.故答案为:BC.【考点】本题考查了一元二次方程根与系数的关系,等腰三角形的定义,分3为底边长或腰长两种情况讨论是解题的关键.5、ABC【解析】【分析】直接利用圆周角定理以及结合圆心角、弧、弦的关系、切线的判定方法、平行线的判定方法、四边形内角和分别分析得出答案.【详解】解:A.∵∠BAD=25°,∠EAD=25°,∴∠DAB=∠EAD∴,故此选项正确;B.∵∠BAD=25°,OA=OD,∴∠ADO=∠BAD=25°∵∠ADC=115°,∴∠ODC=∠ADC-∠ADC=115°-25°=90°,∴CD是⊙O的切线,故此选项正确;C.∵∠EAD=∠ADO=25°∴AE∥DO,故此选项正确;D.∵,,,∴∠OBC=360°-∠DAB-∠ADC-∠C=360°-25°-115°-90°=130°,故此选项错误.故选择ABC.【考点】此题主要考查了切线的判定以及圆周角与弧的关系、四边形内角和、平行线的判定方法等知识,正确掌握相关判定方法是解题关键.三、填空题1、-2或【解析】【分析】根据二次函数一般式的顶点坐标公式表示出顶点,再根据顶点在x轴上,建立等量关系求解即可.【详解】解:的顶点坐标为:∵顶点在x轴上∴解得:故答案为:或【考点】本题考查二次函数一般式的顶点坐标,掌握二次函数一般式的顶点坐标公式是解题关键.2、cm【解析】【分析】设较短的直角边长是xcm,较长的就是(x+5)cm,根据面积是7cm,求出直角边长,根据勾股定理求出斜边长.【详解】解:设这个直角三角形的较短直角边长为xcm,则较长直角边长为(x+5)cm,根据题意,得,所以,解得,,因为直角三角形的边长为正数,所以不符合题意,舍去,所以x=2,当x=2时,x+5=7,由勾股定理,得直角三角形的斜边长为==cm.故答案为:cm.【考点】本题考查了勾股定理,一元二次方程的应用,关键是知道三角形面积公式以及直角三角形中勾股定理的应用.3、12【解析】【分析】连接OA、OD、OF,如图,利用正多边形与圆,分别计算⊙O的内接正四边形与内接正三角形的中心角得到∠AOD=90°,∠AOF=120°,则∠DOF=30°,然后计算即可得到n的值.【详解】解:连接OA、OD、OF,如图,设这个正多边形为n边形,∵AD,AF分别为⊙O的内接正四边形与内接正三角形的一边,∴∠AOD==90°,∠AOF==120°,∴∠DOF=∠AOF-∠AOD=30°,∴n==12,即DF恰好是同圆内接一个正十二边形的一边.故答案为:12.【考点】本题考查了正多边形与圆:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆;熟练掌握正多边形的有关概念.4、a+8b【解析】【分析】观察可知两个拼接时,总长度为2a-(a-b),三个拼接时,总长度为3a-2(a-b),由此可得用9个拼接时的总长度为9a-8(a-b),由此即可得.【详解】观察图形可知两个拼接时,总长度为2a-(a-b),三个拼接时,总长度为3a-2(a-b),四个拼接时,总长度为4a-3(a-b),…,所以9个拼接时,总长度为9a-8(a-b)=a+8b,故答案为a+8b.【考点】本题考查了规律题——图形的变化类,通过推导得出总长度与个数间的规律是解题的关键.5、【解析】【分析】先按题目要求对A、B点进行平移,再根据原点对称的特征:横纵坐标互为相反数进行列方程,求解.【详解】设,向右平移4个单位,再向下平移6个单位得到∵A、B关于原点对称,∴,,解得,,∴故答案为:【考点】本题考查点的平移和原点对称的性质,掌握这些是解题关键.四、解答题1、(1);(2)不亏本,见解析【解析】【分析】(1)设这种药品每次降价的百分率是,根据该药品的原价及经过两次降价后的价格,即可得出关于的一元二次方程,求解即可得出结论;(2)根据经过连续三次降价后的价格=经过连续两次降价后的价格×(1-20%),即可求出再次降价后的价格,将其与100元进行比较后即可得出结论.【详解】(1)解:设每次下降的百分率为,依题意,得:,解得:(不合题意,舍去).答:这种药品每次降价的百分率是20%;(2)128×(1-20%)=102.4,∵102.4>100,∴按此降价幅度再一次降价,药厂不会亏本.【考点】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.2、(1);(2)①11;②.【解析】【分析】(1)把点P(-2,3)代入y=x2+ax+3中,即可求出a;(2)①把m=2代入解析式即可求n的值;②由点Q到y轴的距离小于2,可得-2<m<2,在此范围内求n即可.【详解】(1)解:把代入,得,解得.∵,∴顶点坐标为.(2)①当m=2时,n=11,②点Q到y轴的距离小于2,∴|m|<2,∴-2<m<2,∴2≤n<11.【考点】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征是解题的关键.3、(1);(2);(3)【解析】【分析】(1)由抛物线的对称轴为直线,即可求得点E的坐标;在y=ax2﹣3ax﹣4a(a<0)令y=0可得关于x的方程ax2﹣3ax﹣4a=0,解方程即可求得点A的坐标;(2)如图1,设⊙E与直线BC相切于点D,连接DE,则DE⊥BC,结合(1)可得DE=OE=,EB=,OC=-4a,在Rt△BDE中由勾股定理可得BD=2,这样由tan∠OBC=即可列出关于a的方程,解方程求得a的值即可得到抛物线的解析式;(3)由折叠的性质和MN∥y轴可得∠MCN=∠M′CN=∠MNC,由此可得CM=MN,由点B的坐标为(4,0),点C的坐标为(0,3)可得线段BC=5,直线BC的解析式为y=﹣x+3,由此即可得到M、N的坐标分别为(m,﹣m+3)、(m,﹣m2+m+3),作MF⊥OC于F,这样由sin∠BCO=即可解得CM=m,然后分点N在直线BC的上方和下方两种情况用含m的代数式表达出MN的长度,结合MN=CM即可列出关于m的方程,解方程即可求得对应的m的值,从而得到对应的点Q的坐标.【详解】解:(1)∵对称轴x=,∴点E坐标(,0),令y=0,则有ax2﹣3ax﹣4a=0,∴x=﹣1或4,∴点A坐标(﹣1,0).故答案分别为(,0),(﹣1,0).(2)如图①中,设⊙E与直线BC相切于点D,连接DE,则DE⊥BC,∵DE=OE=,EB=,OC=﹣4a,∴DB=,∵tan∠OBC=,∴,解得a=,∴抛物线解析式为y=.(3)如图②中,由题意∠M′CN=∠NCB,∵MN∥OM′,∴∠M′CN=∠CNM,∴MN=CM,∵点B的坐标为(4,0),点C的坐标为(0,3),∴直线BC解析式为y=﹣x+3,BC=5,∴M(m,﹣m+3),N(m,﹣m2+m+3),作MF⊥OC于F,∵sin∠BCO=,∴,∴CM=m,①当N在直线BC上方时,﹣x2+x+3﹣(﹣x+3)=m,解得:m=或0(舍弃),∴Q1(,0).②当N在直线BC下方时,(﹣m+3)﹣(﹣m2+m+3)=m,解得m=或0(舍弃),∴Q2(,0),综上所述:点Q坐标为(,0)或(,0).【考点】本题是一道二次函数与几何及锐角三角函数综合的题,解题的要点是:(1)熟悉二次函数的对称轴方程及二次函数与一元二次方程的关系是解第1小题的关键;(2)由切线的性质得到DE⊥BC,从而得到tan∠OBC=,这样结合已知条件求出a的值是解第2小题的关键;(3)过点M作MF⊥y轴于点F,这样由sin∠BCO=变形把MC用含m的代数式表达出来,再由折叠的性质和MN∥y轴证得MN=MC,这样就可分点N在BC的上方和下方两种情况列出关于m的方程,解方程求得对应的m的值是解第3小题的关键.4、(1)1秒;(2)不可能,见解析【解析】【分析】(1)经过x秒钟,△PBQ的面积等于4cm2,根据点P从A点开始沿AB边向点B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,表示出BP和BQ的长可列方程求解;(2)看△PBQ的面积能否等于7cm2,只需令×2x(5﹣x)=7,化

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论