难点详解京改版数学9年级上册期末试题含答案详解(完整版)_第1页
难点详解京改版数学9年级上册期末试题含答案详解(完整版)_第2页
难点详解京改版数学9年级上册期末试题含答案详解(完整版)_第3页
难点详解京改版数学9年级上册期末试题含答案详解(完整版)_第4页
难点详解京改版数学9年级上册期末试题含答案详解(完整版)_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

京改版数学9年级上册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题26分)一、单选题(6小题,每小题2分,共计12分)1、如图,点A与点B关于原点对称,点C在第四象限,∠ACB=90°.点D是轴正半轴上一点,AC平分∠BAD,E是AD的中点,反比例函数()的图象经过点A,E.若△ACE的面积为6,则的值为(

)A. B. C. D.2、构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt△ACB中,∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,得∠D=15°,所以tan15°.类比这种方法,计算tan22.5°的值为()A. B.﹣1 C. D.3、在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,则()A. B. C. D.4、如图,在中,,,将绕点C顺时针旋转得到,点在上,交于F,则图中与相似的三角形有(不再添加其他线段)(

)A.1个 B.2个 C.3个 D.4个5、一个四边形的各边之比为1∶2∶3∶4,和它相似的另一个四边形的最小边长为,则它的最大边长为(

)A. B. C. D.6、二次函数y=ax2+bx+c的部分图象如图所示,由图象可知该抛物线与x轴的交点坐标是(

)A.(﹣1,0)和(5,0) B.(1,0)和(5,0)C.(0,﹣1)和(0,5) D.(0,1)和(0,5)二、多选题(7小题,每小题2分,共计14分)1、如图,在中,,于点D,下列结论正确的是(

)A. B. C. D.2、如图,下列条件能判定△ABC与△ADE相似的是(

)A. B.∠B=∠ADEC. D.∠C=∠AED3、利用反例可以判断一个命题是错误的,下列命题错误的是(

)A.若,则 B.对角线相等的四边形是矩形C.函数的图象是中心对称图形 D.六边形的外角和大于五边形的外角和4、已知抛物线(,,是常数,)经过点,,当时,与其对应的函数值.下列结论正确的是(

)A. B.C. D.关于的方程有两个不等的实数根5、已知函数y=的图象如图,以下结论:其中正确的有(

)A.m<0B.在每个分支上y随x的增大而增大C.若点A(﹣1,a)、点B(2,b)在图象上,则a<bD.若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上6、如图是二次函数图象的一部分,过点,,对称轴为直线.则错误的有(

)A. B. C. D.7、已知Rt△ABC中,∠C=90°,AC=2,BC=3,则下列各式中,不正确的是()A.sinB= B.cosB= C.tanB= D.以上都不对第Ⅱ卷(非选择题74分)三、填空题(7小题,每小题2分,共计14分)1、若,则________.2、已知关于的一元二次方程,有下列结论:①当时,方程有两个不相等的实根;②当时,方程不可能有两个异号的实根;③当时,方程的两个实根不可能都小于1;④当时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为_________.3、如图,在平面直角坐标系中,一次函数的图像分别交、轴于点、,将直线绕点按顺时针方向旋转,交轴于点,则直线的函数表达式是__________.4、如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O的半径为2,则CD的长为_____5、图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC为118°时,操作平台C离地面的高度为_______米.(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)6、二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是_____.7、已知点A(3,a)、B(-1,b)在函数的图像上,那么a___b(填“>”或“=”或“<”)四、解答题(6小题,每小题10分,共计60分)1、(1)计算:.(2)解方程:.2、如图,Rt△ABO的顶点A是反比例函数的图象与一次函数的图象在第二象限的交点,AB⊥x轴于点B,且.(1)求反比例函数和一次函数的解析式;(2)求一次函数与反比例函数图象的两个交点A,C的坐标.3、已知抛物线c:y=-x2-2x+3和直线l:y=x+d。将抛物线c在x轴上方的部分沿x轴翻折180°,其余部分保持不变,翻折后的图象与x轴下方的部分组成一个“M”型的新图象(即新函数m:y=-|x2+2x-3|的图象)。(1)当直线l与这个新图象有且只有一个公共点时,d=;(2)当直线l与这个新图象有且只有三个公共点时,求d的值;(3)当直线l与这个新图象有且只有两个公共点时,求d的取值范围;(4)当直线l与这个新图象有四个公共点时,直接写出d的取值范围.4、如图,直角三角形中,,为中点,将绕点旋转得到.一动点从出发,以每秒1的速度沿的路线匀速运动,过点作直线,使.(1)当点运动2秒时,另一动点也从出发沿的路线运动,且在上以每秒1的速度匀速运动,在上以每秒2的速度匀速运动,过作直线使,设点的运动时间为秒,直线与截四边形所得图形的面积为,求关于的函数关系式,并求出的最大值.(2)当点开始运动的同时,另一动点从处出发沿的路线运动,且在上以每秒的速度匀速运动,在上以每秒2的速度匀度运动,是否存在这样的,使为等腰三角形?若存在,直接写出点运动的时间的值,若不存在请说明理由.5、如图,已知二次函数的图象经过点.(1)求的值和图象的顶点坐标.

(2)点在该二次函数图象上.

①当时,求的值;②若到轴的距离小于2,请根据图象直接写出的取值范围.6、若二次函数图像经过,两点,求、的值.-参考答案-一、单选题1、C【解析】【分析】过A作,连接OC、OE,根据点A与点B关于原点对称,∠ACB=90°,AC平分∠BAD得出,从而得出三角形AEC的面积与三角形AOE的面积相等,设,根据E是AD的中点得出得出三角形OAE的面积等于四边形AFGE的面积建立等量关系求解.【详解】解:过A作,连接OC,连接OE:∵点A与点B关于原点对称,∠ACB=90°∴又∵AC平分∠BAD∴∴∴设,根据E是AD的中点得出:∴解得:故答案选:C.【考点】本题考查反比例函数与几何综合,有一定的难度.将三角形AEC的面积转化与三角形AOE的面积相等是解题关键.2、B【解析】【分析】作Rt△ABC,使∠C=90°,∠ABC=45°,延长CB到D,使BD=AB,连接AD,根据构造的直角三角形,设AC=x,再用x表示出CD,即可求出tan22.5°的值.【详解】解:作Rt△ABC,使∠C=90°,∠ABC=90°,∠ABC=45°,延长CB到D,使BD=AB,连接AD,设AC=x,则:BC=x,AB=,CD=,故选:B.【考点】本题考查解直角三角形,解题的关键是根据阅读构造含45°的直角三角形,再作辅助线得到22.5°的直角三角形.3、C【解析】【分析】根据Rt△ABC中,cos

B,tan

B,sin

A的定义,进行判断.【详解】∵Rt△ABC中,sinA=,cosA=,sin

B=,tanB=,∴选项C正确,选项A、B、D错误,故选C.【考点】本题考查了锐角三角函数的定义.关键是熟练掌握锐角三角函数的定义及其变形.4、D【解析】【分析】根据旋转的性质及相似三角形的判定方法进行分析,找出存在的相似三角形即可.【详解】根据题意得:BC=B′C,AB=A′B′,AC=A′C,∠B=∠B′,∠A=∠A′=30°,∠ACB=∠A′CB′=90°∵∠A=30°,∠ACB=90°∴∠B=60°∴BB′=BC=B′C,∠B=∠BCB′=∠BB′C=60°∴∠B′CA=30°,∠ACA′=60°,A′B′∥BC∴∠B′FC=∠B′FA=90°∴△AB′F∽△ABC∽△A′B′C∽△A′CF∽△CFB′∴有4个故选D.【考点】考查了相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.5、C【解析】【分析】设它的最大边长为,根据相似图形的性质求解即可得到答案【详解】解:设它的最大边长为,∵两个四边形相似,∴,解得,即该四边形的最大边长为.故选C.【考点】本题考查了相似多边形的性质,牢记“相似多边形对应边的比相等”是解题的关键.6、A【解析】【分析】首先根据图像得出抛物线的对称轴和其中一个交点坐标,然后根据二次函数的对称性即可求得另一个交点坐标.【详解】解:由图像可得,抛物线的对称轴为,与x轴的一个交点坐标为(5,0),∵抛物线与x轴的两个交点关于对称轴对称,∴抛物线与x轴的另一个交点坐标为(﹣1,0),故选:A.【考点】此题考查了二次函数与x轴的交点,二次函数的对称性,解题的关键是根据二次函数的对称性求出与x轴的另一个交点坐标.二、多选题1、BC【解析】【分析】根据等角的余角相等,先把跟相等的角找出来,在不同直角三角形根据正弦值的定义即可解答.【详解】在中,,,于点D,,,在中,,故A错误;在中,,故B正确;在中,,故C正确,D错误.故选:BC.【考点】本题考查了锐角三角形的定义,掌握正弦值的表示是解题的关键.2、ABD【解析】【分析】利用两组对应边的比相等且夹角对应相等的两个三角形相似可对A、C进行判断;根据有两组角对应相等的两个三角形相似可对B、C进行判断.【详解】解:∵∠EAD=∠BAC,当,∠A=∠A,∴△ABC∽△ADE,故选项A符合题意;当∠B=∠ADE时,△ABC∽△ADE,故选项B符合题意;C选项中角A不是成比例的两边的夹角,故选项C不符合题意;当∠C=∠AED时,△ABC∽△ADE,故选项D符合题意;故选:ABD.【考点】本题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.3、ABD【解析】【分析】根据有理数的乘法、矩形的判定定理、反比例函数的性质、多边形的外角性质逐一判断即可.【详解】解:A、当b=0,a≠0时,则,该选项符合题意;B、如图:四边形ABCD的对角线AC=BD,但四边形ABCD不是矩形,该选项符合题意;C、函数的图象是中心对称图形,该选项不符合题意;D、多边形的外角和都相等,等于360°,该选项符合题意;故选:ABD.【考点】本题考查了命题与定理的知识,解题的关键是了解判断一个命题是假命题的时候可以举出反例.4、BCD【解析】【分析】根据函数与点的关系,一元二次方程根的判别式,不等式的性质,逐一计算判断即可.【详解】∵抛物线(是常数,)经过点(-1,-1),,当时,与其对应的函数值,∴c=1>0,a-b+c=-1,4a-2b+c>1,∴a-b=-2,2a-b>0,∴2a-a-2>0,∴a>2>0,∴b=a+2>0,∴abc>0,故A错误;∵b=a+2,a>2,c=1,,故B正确;∴a+b+c=a+a+2+1=2a+3,∵a>2,∴2a>4,∴2a+3>4+3>7,即,故C正确;∵,∴△==>0,∴有两个不等的实数根,故D正确.故选:BCD.【考点】本题考查了二次函数的性质,一元二次方程根的判别式,不等式的基本性质,熟练掌握二次函数的性质,灵活使用根的判别式,准确掌握不等式的基本性质是解题的关键.5、ABD【解析】【分析】利用反比例函数的性质及反比例函数的图象上的点的坐标特征逐项判定即可.【详解】解:①根据反比例函数的图象的两个分支分别位于二、四象限,可得m<0,故①正确;②在每个分支上y随x的增大而增大,故②正确;③若点A(﹣1,a)、点B(2,b)在图象上,则a>b,故③错误;④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上,正确.故选:ABD.【考点】本题主要考查了反比例函数的性质及反比例函数的图象上的点的坐标特征,掌握反比例函数的图象上的点的坐标特征成为解答本题的关键.6、BD【解析】【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴x=−1可得2a+b的符号;再由根的判别式可得,根据二次函数的对称性进而对所得结论进行判断.【详解】解:A、由抛物线的开口向下知a<0,与y轴的交点在y轴的正半轴上,知c>0,∵对称轴为直线,得2a=b,∴a、b同号,即b<0,∴abc>0;故本选项正确,不符合题意;B、∵对称轴为,得2a=b,∴2a+b=4a,且a≠0,∴2a+b≠0;故本选项错误,符合题意;C、从图象知,该函数与x轴有两个不同的交点,所以根的判别式,即;故本选项正确,不符合题意;D、∵−3<x1<−2,∴根据二次函数图象的对称性,知当x=1时,y<0;又由A知,2a=b,∴a+b+c<0;∴b+b+c<0,即3b+2c<0;故本选项错误,符合题意.故选:BD.【考点】本题主要考查了二次函数图象与系数之间的关系,熟练运用对称轴的范围求2a与b的关系,二次函数与方程及不等式之间的关系是解决本题的关键.7、ABD【解析】【分析】根据勾股定理求出AB的值,再根据锐角三角函数定义求出的三个函数值,进行判断即可得.【详解】解:如图所示,在中,AC=2,BC=3,根据勾股定理,,A、,选项说法错误,符合题意;B、,选项说法错误,符合题意;C、,选项说法正确,不符合题意;D、选项C说法正确,选项说法错误,符合题意;故选ABD.【考点】本题考查了锐角三角形函数的定义,解题的关键是掌握勾股定理和锐角三角函数的定义.三、填空题1、【解析】【分析】设,,代入求解即可.【详解】由可设,,k是非零整数,则.故答案为:.【考点】本题主要考查了比例的基本性质,准确利用性质变形是解题的关键.2、①③④【解析】【分析】由根的判别式,根与系数的关系进行判断,即可得到答案.【详解】解:根据题意,∵一元二次方程,∴;∴当,即时,方程有两个不相等的实根;故①正确;当,解得:,方程有两个同号的实数根,则当时,方程可能有两个异号的实根;故②错误;抛物线的对称轴为:,则当时,方程的两个实根不可能都小于1;故③正确;由,则,解得:或;故④正确;∴正确的结论有①③④;故答案为:①③④.【考点】本题考查了二次函数的性质,一元二次方程根的判别式,根与系数的关系,解题的关键是掌握所学的知识进行解题.3、【解析】【分析】先根据一次函数求得、坐标,再过作的垂线,构造直角三角形,根据勾股定理和正余弦公式求得的长度,得到点坐标,从而得到直线的函数表达式.【详解】因为一次函数的图像分别交、轴于点、,则,,则.过作于点,因为,所以由勾股定理得,设,则,根据等面积可得:,即,解得.则,即,所以直线的函数表达式是.【考点】本题综合考察了一次函数的求解、勾股定理、正余弦公式,以及根据一次函数的解求一次函数的表达式,要学会通过作辅助线得到特殊三角形,以便求解.4、【解析】【分析】连接OA,OC,根据∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函数即可求得CD的长.【详解】解:连接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=,故答案为.【考点】本题考查了圆周角定理以及锐角三角函数,根据题意作出常用辅助线是解题关键.5、7.6【解析】【分析】作于,于,如图2,易得四边形为矩形,则,,再计算出,在中利用正弦可计算出,然后计算即可.【详解】解:作于E,于,如图2,∴四边形为矩形,∴,,∴,∴在中,,∴,∴,∴操作平台离地面的高度为.故答案是:.【考点】本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用三角函数的定义进行几何计算.6、(1,0)【解析】【分析】根据表中数据得到点(-2,-3)和(0,-3)对称点,从而得到抛物线的对称轴为直线x=-1,再利用表中数据得到抛物线与x轴的一个交点坐标为(-3,0),然后根据抛物线的对称性就看得到抛物线与x轴的一个交点坐标.【详解】∵x=-2,y=-3;x=0时,y=-3,∴抛物线的对称轴为直线x=-1,∵抛物线与x轴的一个交点坐标为(-3,0),∴抛物线与x轴的一个交点坐标为(1,0).故答案为(1,0).【考点】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化解关于x的一元二次方程即可求得交点横坐标.也考查了二次函数的性质.7、<【解析】【分析】把点A(3,a),B(-1,b)代入函数上求出a、b的值,再进行比较即可.【详解】把点A(3,a)代入函数可得,a=-1;把点B(-1,b)代入函数可得,b=3;∵3>-1,即a<b.故答案为:<.【考点】本题比较简单,考查了反比例函数图象上点的坐标特点,即反比例函数图象上点的坐标一定适合此函数的解析式.四、解答题1、(1)10;(2)无解.【解析】【分析】(1)原式利用绝对值的代数意义,特殊角三角函数值,二次根式性质,负整数指数幂法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:(1)原式;(2)去分母得:2+1−x=2x−6,解得:x=3,经检验x=3是增根,分式方程无解.【考点】此题考查了解分式方程以及实数的运算,熟记特殊角三角函数值,实数的运算法则以及分式方程的解法是解本题的关键.2、(1),;(2)A(-1,6),C(6,-1).【解析】【分析】(1)先根据反比例函数的图象所在的象限判断出k的符号,在由△ABO的面积求出k的值,进而可得出两个函数的解析式;(2)把两函数的解析式组成方程组,求出x、y的值,即可得出A、C两点的坐标.【详解】(1)∵AB⊥x轴于点B,且,∴,∴.∵反比例函数图象在第二、四象限,∴,∴,∴反比例函数的解析式为,一次函数的解析式为;(2)由,解得,或,∴A(-1,6),C(6,-1).【考点】本题考查了反比例函数比例系数k的几何意义及应用,反比例函数与一次函数的交点问题,能根据△ABO的面积求出k的值是解答此题的关键.3、(1)d=;(2)d=或d=(3)<d<或d<;(4)<d<。【解析】【分析】(1)令-x2-2x+3=x+d求解即可;(2)设抛物线c:y=-x2-2x+3与x轴交于点A(-3,0),点B(1,0),则根据方程有两个相等的实根求出P的坐标,然后求解即可;(3)(4)根据(2)求出的P点坐标进行数形结合画图找出d的取值范围即可.【详解】解:(1)当直线l经过点A(-3,0)时,d=;(2)设抛物线c:y=-x2-2x+3与x轴交于点A(-3,0),点B(1,0),直线l:y=x+d与抛物线c:y=x2+2x-3(-3<x<1)相切于点P,则点P的横坐标恰好是方程x+d=x2+2x-3,即2x2+3x-2d-6=0(-3<x<1)的两个相等实数根,解△=9+8(2d+6)=0得d=,∴点P的坐标为().①当直线l经过点B(1,0)时,直线l与这个新图象有且只有三个公共点,解得d=;②当直线l经过点P()时,直线l与这个新图象有且只有三个公共点,解得d=;

∴综合①、②得:d=或d=(3)①由平移直线l可得:直线l从经过点A(-3,0)开始向下平移到直线l经过点P()的过程中,直线l与这个新图象有且只有两个公共点,可得<d<②直线l从经过点P()继续向下平移的过程中,直线l与这个新图象有且只有两个公共点,可得d<;∴综合①、②得:<d<或d<;(4)如图:当直线l经过点B(1,0)时,直线l与这个新图象有且只有三个公共点,解得d=;当直线l继续向下平移的过程中经过点P(),直线l与这个新图象有且只有三个公共点,可得d=;∴要使直线l与这个新图象有四个公共点则d的取值范围是<d<.【考

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论