版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届安徽省舒城桃溪中学高三数学第一学期期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列,,,…,是首项为8,公比为得等比数列,则等于()A.64 B.32 C.2 D.42.在中,在边上满足,为的中点,则().A. B. C. D.3.函数()的图像可以是()A. B.C. D.4.设椭圆:的右顶点为A,右焦点为F,B、C为椭圆上关于原点对称的两点,直线BF交直线AC于M,且M为AC的中点,则椭圆E的离心率是()A. B. C. D.5.已知,则下列不等式正确的是()A. B.C. D.6.下列函数中,在区间上单调递减的是()A. B. C. D.7.已知,且,则()A. B. C. D.8.已知复数z,则复数z的虚部为()A. B. C.i D.i9.运行如图所示的程序框图,若输出的值为300,则判断框中可以填()A. B. C. D.10.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}时,A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.∅11.已知函数且,则实数的取值范围是()A. B. C. D.12.设双曲线(a>0,b>0)的一个焦点为F(c,0)(c>0),且离心率等于,若该双曲线的一条渐近线被圆x2+y2﹣2cx=0截得的弦长为2,则该双曲线的标准方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设函数,则______.14.函数的图象在处的切线方程为__________.15.已知向量,且,则___________.16.已知实数,对任意,有,且,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在中,角、、的对边分别为,,,,.(1)若,求的值;(2)若,求的面积.18.(12分)求函数的最大值.19.(12分)设(1)证明:当时,;(2)当时,求整数的最大值.(参考数据:,)20.(12分)在三棱锥S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45∘,∠SAC=60°,D为棱AB的中点,SA=2(I)证明:SD⊥BC;(II)求直线SD与平面SBC所成角的正弦值.21.(12分)已知函数.(1)当时,解不等式;(2)设不等式的解集为,若,求实数的取值范围.22.(10分)11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地-安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮),在相同的条件下,每轮甲乙两人在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得-1分;两人都命中或都未命中,两人均得0分,设甲每次投球命中的概率为,乙每次投球命中的概率为,且各次投球互不影响.(1)经过1轮投球,记甲的得分为,求的分布列;(2)若经过轮投球,用表示经过第轮投球,累计得分,甲的得分高于乙的得分的概率.①求;②规定,经过计算机计算可估计得,请根据①中的值分别写出a,c关于b的表达式,并由此求出数列的通项公式.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
根据题意依次计算得到答案.【详解】根据题意知:,,故,,.故选:.本题考查了数列值的计算,意在考查学生的计算能力.2.B【解析】
由,可得,,再将代入即可.【详解】因为,所以,故.故选:B.本题考查平面向量的线性运算性质以及平面向量基本定理的应用,是一道基础题.3.B【解析】
根据,可排除,然后采用导数,判断原函数的单调性,可得结果.【详解】由题可知:,所以当时,,又,令,则令,则所以函数在单调递减在单调递增,故选:B本题考查函数的图像,可从以下指标进行观察:(1)定义域;(2)奇偶性;(3)特殊值;(4)单调性;(5)值域,属基础题.4.C【解析】
连接,为的中位线,从而,且,进而,由此能求出椭圆的离心率.【详解】如图,连接,椭圆:的右顶点为A,右焦点为F,B、C为椭圆上关于原点对称的两点,不妨设B在第二象限,直线BF交直线AC于M,且M为AC的中点为的中位线,,且,,解得椭圆的离心率.故选:C本题考查了椭圆的几何性质,考查了运算求解能力,属于基础题.5.D【解析】
利用特殊值代入法,作差法,排除不符合条件的选项,得到符合条件的选项.【详解】已知,赋值法讨论的情况:(1)当时,令,,则,,排除B、C选项;(2)当时,令,,则,排除A选项.故选:D.比较大小通常采用作差法,本题主要考查不等式与不等关系,不等式的基本性质,利用特殊值代入法,排除不符合条件的选项,得到符合条件的选项,是一种简单有效的方法,属于中等题.6.C【解析】
由每个函数的单调区间,即可得到本题答案.【详解】因为函数和在递增,而在递减.故选:C本题主要考查常见简单函数的单调区间,属基础题.7.B【解析】分析:首先利用同角三角函数关系式,结合题中所给的角的范围,求得的值,之后借助于倍角公式,将待求的式子转化为关于的式子,代入从而求得结果.详解:根据题中的条件,可得为锐角,根据,可求得,而,故选B.点睛:该题考查的是有关同角三角函数关系式以及倍角公式的应用,在解题的过程中,需要对已知真切求余弦的方法要明确,可以应用同角三角函数关系式求解,也可以结合三角函数的定义式求解.8.B【解析】
利用复数的运算法则、虚部的定义即可得出【详解】,则复数z的虚部为.故选:B.本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.9.B【解析】
由,则输出为300,即可得出判断框的答案【详解】由,则输出的值为300,,故判断框中应填?故选:.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.10.B【解析】试题分析:由集合A中的函数y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函数考点:交集及其运算.11.B【解析】
构造函数,判断出的单调性和奇偶性,由此求得不等式的解集.【详解】构造函数,由解得,所以的定义域为,且,所以为奇函数,而,所以在定义域上为增函数,且.由得,即,所以.故选:B本小题主要考查利用函数的单调性和奇偶性解不等式,属于中档题.12.C【解析】
由题得,,又,联立解方程组即可得,,进而得出双曲线方程.【详解】由题得①又该双曲线的一条渐近线方程为,且被圆x2+y2﹣2cx=0截得的弦长为2,所以②又③由①②③可得:,,所以双曲线的标准方程为.故选:C本题主要考查了双曲线的简单几何性质,圆的方程的有关计算,考查了学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
由自变量所在定义域范围,代入对应解析式,再由对数加减法运算法则与对数恒等式关系分别求值再相加,即为答案.【详解】因为函数,则因为,则故故答案为:本题考查分段函数求值,属于简单题.14.【解析】
利用导数的几何意义,对求导后在计算在处导函数的值,再利用点斜式列出方程化简即可.【详解】,则切线的斜率为.又,所以函数的图象在处的切线方程为,即.故答案为:本题主要考查了根据导数的几何意义求解函数在某点处的切线方程问题,需要注意求导法则与计算,属于基础题.15.【解析】
由向量平行的坐标表示得出,求解即可得出答案.【详解】因为,所以,解得.故答案为:本题主要考查了由向量共线或平行求参数,属于基础题.16.-1【解析】
由二项式定理及展开式系数的求法得,又,所以,令得:,所以,得解.【详解】由,且,则,又,所以,令得:,所以,故答案为:.本题考查了二项式定理及展开式系数的求法,意在考查学生对这些知识的理解掌握水平.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)7(2)14【解析】
(1)在中,,可得,结合正弦定理,即可求得答案;(2)根据余弦定理和三角形面积公式,即可求得答案.【详解】(1)在中,,,,,,.(2),,,解得,.本题主要考查了正弦定理和余弦定理解三角形,解题关键是掌握正弦定理边化角,考查了分析能力和计算能力,属于中档题.18.【解析】
试题分析:由柯西不等式得试题解析:因为,所以.等号当且仅当,即时成立.所以的最大值为.考点:柯西不等式求最值19.(1)证明见解析;(2).【解析】
(1)将代入函数解析式可得,构造函数,求得并令,由导函数符号判断函数单调性并求得最大值,由即可证明恒成立,即不等式得证.(2)对函数求导,变形后讨论当时的函数单调情况:当时,可知满足题意;将不等式化简后构造函数,利用导函数求得极值点与函数的单调性,从而求得最小值为,分别依次代入检验的符号,即可确定整数的最大值;当时不满足题意,因为求整数的最大值,所以时无需再讨论.【详解】(1)证明:当时代入可得,令,,则,令解得,当时,所以在单调递增,当时,所以在单调递减,所以,则,即成立.(2)函数则,若时,当时,,则在时单调递减,所以,即当时成立;所以此时需满足的整数解即可,将不等式化简可得,令则令解得,当时,即在内单调递减,当时,即在内单调递增,所以当时取得最小值,则,,,所以此时满足的整数的最大值为;当时,在时,此时,与题意矛盾,所以不成立.因为求整数的最大值,所以时无需再讨论,综上所述,当时,整数的最大值为.本题考查了导数在证明不等式中的应用,导数与函数单调性、极值、最值的关系和应用,构造函数法求最值,并判断函数值法符号,综合性强,属于难题.20.(I)证明见解析;(II)1【解析】
(I)过D作DE⊥BC于E,连接SE,根据勾股定理得到SE⊥BC,DE⊥BC得到BC⊥平面SED,得到证明.(II)过点D作DF⊥SE于F,证明DF⊥平面SBC,故∠ESD为直线SD与平面SBC所成角,计算夹角得到答案.【详解】(I)过D作DE⊥BC于E,连接SE,根据角度的垂直关系易知:AC=1,AB=SB=2,CS=CB=3,故DE=BDsin∠CBD=6根据余弦定理:13+SE2-2故SE⊥BC,DE⊥BC,SE∩DE=E,故BC⊥平面SED,SD⊂平面SED,故SD⊥BC.(II)过点D作DF⊥SE于F,BC⊥平面SED,DF⊂平面SED,故DF⊥BC,DF⊥SE,BC∩SE=E,故DF⊥平面SBC,故∠ESD为直线SD与平面SBC所成角,SD2=S故sin∠ESD=本题考查了线线垂直,线面夹角,意在考查学生的计算能力和空间想象能力.21.(1)或;(2)【解析】
(1)使用零点分段法,讨论分段的取值范围,然后取它们的并集,可得结果.(2)利用等价转化的思想,可得不等式在恒成立,然后解出解集,根据集合间的包含关系,可得结果.【详解】(1)当时,原不等式可化为.①当时,则,所以;②当时,则,所以;⑧当时,则,所以.综上所述:当时,不等式的解集为或.(2)由,则,由题可知:在恒成立,所以,即,即,所以故所求实数的取值范围是.本题考查零点分段求解含绝对值不等式,熟练使用分类讨论的方法,以及知识的交叉应用,同时掌握等价转化的思想,属中档题.22.(1)分布列见解析;(2)①;②,.【解析】
(1)经过1轮投球,甲的得分的取值为,记一轮投球,甲投中为事件,乙投中为事件,相互独立,计算概率后可得分布列;(2)由(1)得,由两轮的得分可计算出,计算时可先计算出经过2轮后甲的得分的分布列(的取值为),然后结合的分布列和的分布可计算,由,代入,得两个方程,解得,从而得到数列的递推式,变形后得是等比数列,由等比数列通项公式得,然后用累加法可求得.【详解】(1)记一轮投球
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 特朗普和拜登达成协议书
- 2025版慢性肾炎患者护理指南
- 提高校园精神文明面貌
- 设备操作员工教育
- 家庭训练案例分享
- 眩晕健康知识宣教
- 问卷调查研究方法
- 2025版感染性疾病常见症状及护理技巧
- 去除特效的方法
- 青少年营养宣教
- 钙敏感受体调控内源性H2S抑制糖尿病血管平滑肌细胞增殖的
- GEOGEBRA在初中数学教学中的应用
- 新世纪福音战士课件
- 超材料(metamaterials)教学讲解课件
- 《毕业设计指导》课件
- 秸秆综合利用课件
- 医院重点部位安全保卫制度
- Q∕SY 1835-2015 危险场所在用防爆电气装置检测技术规范
- Q∕SY 1287-2010 地质导向钻井系统
- 家具厂首件检验记录表
- 钩端螺旋体病疫情应急处置技术方案
评论
0/150
提交评论