考点攻克黑龙江省五常市中考数学真题分类(勾股定理)汇编专题测评练习题_第1页
考点攻克黑龙江省五常市中考数学真题分类(勾股定理)汇编专题测评练习题_第2页
考点攻克黑龙江省五常市中考数学真题分类(勾股定理)汇编专题测评练习题_第3页
考点攻克黑龙江省五常市中考数学真题分类(勾股定理)汇编专题测评练习题_第4页
考点攻克黑龙江省五常市中考数学真题分类(勾股定理)汇编专题测评练习题_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省五常市中考数学真题分类(勾股定理)汇编专题测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、如图,长方形中,,,将此长方形折叠,使点与点重合,折痕为,则的长为(

)A.12 B.8 C.10 D.132、若直角三角形的三边长分别为2,4,x,则x的可能值有(

)A.1个 B.2个 C.3个 D.4个3、《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为尺,则可列方程为(

)A. B.C. D.4、如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内的点F处,连接CF,则CF的长为()A. B. C. D.5、如图,所有阴影四边形都是正方形,所有三角形都是直角三角形,已知正方形A,B,C的面积依次为2,4,3,则正方形D的面积为()A.9 B.8 C.27 D.456、如图,在中,,cm,cm,点、分别在、边上.现将沿翻折,使点落在点处.连接,则长度的最小值为(

)A.0 B.2 C.4 D.67、如图,在中,,,,为边上一动点,于,于,为中点,则的最小值为(

).A. B. C. D.第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、如图,在中,,,,现将沿进行翻折,使点刚好落在上,则__________.2、已知一直角三角形的两条直角边分别为6cm、8cm,则此直角三角形斜边上的高为____.3、如图,某农舍的大门是一个木制的长方形栅栏,它的高为2m,宽为1.5m,现需要在相对的顶点间用一块木板加固,则木板的长为________.4、如图,台风过后,某希望小学的旗杆在离地某处断裂,且旗杆顶部落在离旗杆底部8m处,已知旗杆原长16m,你能求出旗杆在离底部________m位置断裂.5、一根直立于水中的芦节(BD)高出水面(AC)2米,一阵风吹来,芦苇的顶端D恰好到达水面的C处,且C到BD的距离AC=6米,水的深度(AB)为________米6、已知,在中,,,,则的面积为__.7、在Rt△ABC中,∠C=90°,AC=9,AB=15,则点C到AB的距离是_______.8、无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有__________cm.三、解答题(7小题,每小题10分,共计70分)1、一架梯子长13米,斜靠在一面墙上,梯子底端离墙5米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了7米到C,那么梯子的底端在水平方向滑动了几米?2、一架云梯长25m,如图所示斜靠在一而墙上,梯子底端C离墙7m.(1)这个梯子的顶端A距地面有多高?(2)如果梯子的顶端下滑了4m,那么梯子的底部在水平方向滑动了多少米?3、点P到y轴的距离与它到点A(-8,2)的距离都等于13,求点P的坐标。4、如图是“弦图”的示意图,“弦图”最早是由三国时期的数学家赵爽在为《周髀算经》作注时给出的,它标志着中国古代的数学成就.它由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形,每个直角三角形的两条直角边分别为a、b,斜边为c.请你运用此图形证明勾股定理:a2+b2=c2.5、设直角三角形的两条直角边长及斜边上的高分别为a,b及h,求证:.6、有一只喜鹊在一棵高3米的小树的树梢上觅食,它的巢筑在距离该树24米,高为14米的一棵大树上,且巢离大树顶部为1米,这时,它听到巢中幼鸟求助的叫声,立刻赶过去,如果它的飞行速度为每秒5米,那么它至少几秒能赶回巢中?7、已知:在中,点在直线上,点在同一条直线上,且,【问题初探】(1)如图1,若平分,求证:.请依据以下的简易思维框图,写出完整的证明过程.【变式再探】(2)如图2,若平分的外角,交的延长线于点,问:和的数量关系发生改变了吗?若改变,请写出正确的结论,并证明;若不改变,请说明理由.【拓展运用】(3)如图3,在的条件下.若,求的长度.-参考答案-一、单选题1、D【解析】【分析】设BE为x,则AE为25-x,在由勾股定理有,即可求得BE=13.【详解】设BE为x,则DE为x,AE为25-x∵四边形为长方形∴∠EAB=90°∴在中由勾股定理有即化简得解得故选:D.【考点】本题考查了折叠问题求折痕或其他边长,主要可根据折叠前后两图形的全等条件,把某个直角三角形的三边都用同一未知量表示出来,并根据勾股定理建立方程,进而可以求解.2、B【解析】【详解】分析:x可为斜边也可为直角边,因此解本题时要对x的取值进行讨论.解答:解:当x为斜边时,x2=22+42=20,所以x=2;当4为斜边时,x2=16-4=12,x=2.故选B.点评:本题考查了勾股定理的应用,注意要分两种情况讨论.3、D【解析】【分析】先画出三角形,根据勾股定理和题目设好的未知数列出方程.【详解】解:如图,根据题意,,,设折断处离地面的高度是x尺,即,根据勾股定理,,即.故选:D.【考点】本题考查勾股定理的方程思想,解题的关键是根据题意利用勾股定理列出方程.4、C【解析】【分析】连接BF,(见详解图),由翻折变换可知,BF⊥AE,BE=EF,由点E是BC的中点,可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的长度即可【详解】如图,连接BF.∵△AEF是由△ABE沿AE折叠得到的,∴BF⊥AE,BE=EF.∵BC=6,点E为BC的中点,∴BE=EC=EF=3根据勾股定理有AE=AB+BE代入数据求得AE=5根据三角形的面积公式得BH=即可得BF=由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC-BF=CF代入数据求得CF=故答案为:【考点】此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质,对应点的连线被折痕垂直平分.5、A【解析】【分析】设正方形D的面积为x,根据图形得出方程2+4=x-3,求出即可.【详解】∵正方形A、B、C的面积依次为2、4、3,∴根据图形得:2+4=x−3.解得:x=9.故选A.【考点】本题考查了勾股定理,根据图形推出四个正方形的关系是解决问题的关键.6、C【解析】【分析】当H落在AB上,点D与B重合时,AH长度的值最小,根据勾股定理得到AB=10cm,由折叠的性质知,BH=BC=6cm,于是得到结论.【详解】解:当H落在AB上,点D与B重合时,AH长度的值最小,∵∠C=90°,AC=8cm,BC=6cm,∴AB=10cm,由折叠的性质知,BH=BC=6cm,∴AH=AB-BH=4cm.故选:C.【考点】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.7、D【解析】【分析】先根据矩形的判定得出AEPF是矩形,再根据矩形的性质得出EF,AP互相平分,且EF=AP,再根据垂线段最短的性质就可以得出AP⊥BC时,AP的值最小,即AM的值最小,根据面积关系建立等式求出其解即可.【详解】解:如图,连接AP,∵AB=3,AC=4,BC=5,∴∠EAF=90°,∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交点就是M点.∵当AP的值最小时,AM的值就最小,∴当AP⊥BC时,AP的值最小,即AM的值最小.∵AP•BC=AB•AC,∴AP•BC=AB•AC,∵AB=3,AC=4,BC=5,∴5AP=3×4,∴AP=,∴AM=.故选:D.【考点】本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,解题的关键是求出AP的最小值.二、填空题1、【解析】【详解】解:设CD=x,则AD=A′D=4-x.在直角三角形ABC中,BC==5.则A′C=BC-AB=BC-A′B=5-3=2.在直角三角形A′DC中:AD2+AC2=CD2.即:(4-x)2+22=x2.解得:x=.故答案为:2.52、4.8cm.【解析】【分析】根据勾股定理可求出斜边.然后由于同一三角形面积一定,可列方程直接解答.【详解】∵直角三角形的两条直角边分别为6cm,8cm,∴斜边为=10(cm),设斜边上的高为h,则直角三角形的面积为×6×8=×10h,解得:h=4.8cm,这个直角三角形斜边上的高为4.8cm.故答案为4.8cm.【考点】此题考查勾股定理,解题关键在于列出方程.3、2.5m【解析】【详解】设木棒的长为xm,根据勾股定理可得:x2=22+1.52,解得x=2.5.故木棒的长为2.5m.故答案为2.5m.4、6【解析】【分析】设,则,在中,利用勾股定理列方程,即可求解.【详解】解:如图,由题意知,,,设,则,在中,,即,解得,因此旗杆在离底部6m位置断裂.故答案为:6.【考点】本题考查勾股定理的实际应用,读懂题意,根据勾股定理列出方程是解题的关键.5、8【解析】【分析】先设水深x米,则AB=x,则有BD=AD+AB=x+2,由题条件有BD=BC=x+2,又根据芦节直立水面可知BD⊥AC,则在直角△ABC中,利用勾股定理即可求出x.【详解】解:设水深x米,则AB=x,则有:BD=AD+AB=x+2,即有:BD=BC=x+2,根据芦节直立水面,可知BD⊥AC,且AC=6,则在直角△ABC中:,即:,解得x=8,即水深8米,故答案为8.【考点】本题考查了勾股定理的应用,从现实图形中抽象出勾股定理这一模型是解答本题的关键.6、2或14#14或2【解析】【分析】过点B作AC边的高BD,Rt△ABD中,∠A=45°,AB=4,得BD=AD=4,在Rt△BDC中,BC=4,得CD==5,①△ABC是钝角三角形时,②△ABC是锐角三角形时,分别求出AC的长,即可求解.【详解】解:过点作边的高,中,,,,在中,,,①是钝角三角形时,,;②是锐角三角形时,,,故答案为:2或14.【考点】本题考查了勾股定理,三角形面积求法,解题关键是分类讨论思想.7、【解析】【分析】首先根据勾股定理求出直角边BC的长,再根据三角形的面积为定值即可求出则点C到AB的距离【详解】在Rt△ABC中,∠C=90°,则有AC2+BC2=AB2∵AC=9,BC=12,∴AB=在Rt△ABC中,∠C=90°,则有AC2+BC2=AB2,∵AC=9,AB=15,∴BC==12,∵S△ABC=AC⋅BC=AB⋅h,∴h==故答案为【考点】本题考查了勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键8、5【解析】【分析】根据题意直接利用勾股定理得出杯子内的筷子长度,进而得出答案.【详解】解:由题意可得:杯子内的筷子长度为:=15,则木筷露在杯子外面的部分至少有:20−15=5(cm).故答案为5.【考点】此题主要考查了勾股定理的应用,正确得出杯子内筷子的长是解决问题的关键.三、解答题1、(1)12米;(2)7米【解析】【分析】(1)由题意易得AB=CD=13米,OB=5米,然后根据勾股定理可求解;(2)由题意得CO=5米,然后根据勾股定理可得求解.【详解】解:(1)由题意得,AB=CD=13米,OB=5米,在Rt,由勾股定理得:AO2=AB2-OB2=132-52=169-25=144,解得AO=12米,答:这个梯子的顶端距地面有12米高;(2)由题意得,AC=7米,由(1)得AO=12米,∴CO=AO-AC=12-7=5米,在Rt,由勾股定理得:OD2=CD2-CO2=132-52=169-25=144,解得OD=12米∴BD=OD-OB=12-5=7米,答:梯子的底端在水平方向滑动了7米.【考点】本题主要考查勾股定理,熟练掌握勾股定理是解题的关键.2、(1)这个梯子的顶端距地面有高;(2)梯子的底部在水平方向滑动了.【解析】【分析】(1)根据勾股定理即可求解;(2)先求出BD,再根据勾股定理即可求解.【详解】解:(1)由题意可知:,;,在中,由勾股定理得:,∴,因此,这个梯子的顶端距地面有高.(2)由图可知:AD=4m,,在中,由勾股定理得:,∴,∴.答:梯子的底部在水平方向滑动了.【考点】此题主要考查勾股定理的实际应用,解题的关键是根据题意在直角三角形中,利用勾股定理进行求解.3、或.【解析】【分析】由P到y轴的距离为13,可得P点横坐标为13或-13,设出P点坐标,然后利用两点间的距离公式建立方程求解即可.【详解】解:∵点P到y轴的距离为13,∴P点横坐标为13或-13当P点横坐标为13时,设P(13,a)由点P到点A(-8,2)的距离等于13得:整理得,无解,故此种情况不存在;当P点横坐标为-13时,设P(-13,a)同理可得整理得,解得或∴点P的坐标为或.【考点】本题考查直角坐标系中两点间的距离公式与解一元二次方程,熟练掌握公式建立方程是解题的关键.4、见解析【解析】【分析】根据大正方形的面积=小正方形的面积+4个直角三角形的面积证明即可【详解】解:由题意得大正方形面积,小正方形面积,4个小直角三角形的面积,∵大正方形的面积=小正方形的面积+4个直角三角形的面积,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论