




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届吉林省长春市东北师范大附属中学数学九年级第一学期期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知,如图,点C,D在⊙O上,直径AB=6cm,弦AC,BD相交于点E,若CE=BC,则阴影部分面积为()A. B. C. D.2.已知2x=5y(y≠0),则下列比例式成立的是()A. B. C. D.3.下列等式从左到右变形中,属于因式分解的是()A. B.C. D.4.我们定义一种新函数:形如(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列五个结论:其中正确结论的个数是()①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=﹣1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4,A.4 B.3 C.2 D.15.若关于的方程有两个不相等的实数根,则的取值范围是()A. B. C. D.6.如图,在圆O中,弦AB=4,点C在AB上移动,连接OC,过点C作CD⊥OC交圆O于点D,则CD的最大值为()A. B.2 C. D.7.下列图形中,是中心对称图形的是()A. B. C. D.8.把二次函数化成的形式是下列中的()A. B.C. D.9.若反比例函数的图象经过点(2,-3),则k值是()A.6 B.-6 C. D.10.如图,点是线段的垂直平分线与的垂直平分线的交点,若,则的度数是()A. B. C. D.11.如图,将沿着弦翻折,劣弧恰好经过圆心.如果半径为4,那么的弦长度为A. B. C. D.12.如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是()A.20° B.30° C.45° D.60°二、填空题(每题4分,共24分)13.如图,已知反比例函数的图象经过斜边的中点,与直角边相交于点.若的面积为8,则的值为________.14.如图,在Rt△ABC中,∠C=90°,AC=6,AD∥BC,DE与AB交于点F,已知AD=4,DF=2EF,sin∠DAB=,则线段DE=_____.15.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,在飞行过程中,当小球的行高度为15m时,则飞行时间是_____.16.如图,,,△A2B2B3是全等的等边三角形,点B,B1,B2,B3在同一条直线上,连接A2B交AB1于点P,交A1B1于点Q,则PB1∶QB1的值为___.17.在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:摸球实验次数100100050001000050000100000“摸出黑球”的次数36387201940091997040008“摸出黑球”的频率(结果保留小数点后三位)0.3600.3870.4040.4010.3990.400根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位).18.在平面直角坐标系中,已知点,以原点为位似中心,相似比为.把缩小,则点的对应点的坐标分别是_____,_____.三、解答题(共78分)19.(8分)(1)计算:(2),求的度数20.(8分)某中学课外兴趣活动小组准备围建一个矩形苗圃,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃垂直于墙的一边长为x米.(1)若苗圃的面积为72平方米,求x的值;(2)这个苗圃的面积能否是120平方米?请说明理由.21.(8分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=4,⊙O的半径为,求BC的长.22.(10分)如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,求∠C.23.(10分)如图,已知直线y=kx+6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第三象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.24.(10分)已知:如图,菱形中,点,分别在,边上,,连接,.求证:.25.(12分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,篮球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;(3)现规定:摸到红球得5分,摸到黄球得3分(每次摸后放回),乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率.26.计算:;
参考答案一、选择题(每题4分,共48分)1、B【分析】连接OD、OC,根据CE=BC,得出∠DBC=∠CEB=45°,进而得出∠DOC=90°,根据S阴影=S扇形-S△ODC即可求得.【详解】连接OD、OC,∵AB是直径,∴∠ACB=90°,∵CE=BC,∴∠CBD=∠CEB=45°,∴∠COD=2∠DBC=90°,∴S阴影=S扇形−S△ODC=−×3×3=−.故答案选B.本题考查的知识点是扇形面积的计算,解题的关键是熟练的掌握扇形面积的计算.2、B【解析】试题解析:∵2x=5y,∴.故选B.3、D【分析】直接利用因式分解的定义分析得出答案.【详解】A.,属于整式乘法运算,不符合因式分解的定义,故此选项错误;B.,右边不是整式的积的形式,不符合因式分解的定义,故此选项错误;C.,属于整式乘法运算,不符合因式分解的定义,故此选项错误;D.),属于因式分解,符合题意;故选:D.本题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.4、A【分析】由(-1,0),(3,0)和(0,3)坐标都满足函数,∴①是正确的;从图象可以看出图象具有对称性,对称轴可用对称轴公式求得是直线,②也是正确的;根据函数的图象和性质,发现当或时,函数值随值的增大而增大,因此③也是正确的;函数图象的最低点就是与轴的两个交点,根据,求出相应的的值为或,因此④也是正确的;从图象上看,存在函数值大于当时的,因此⑤时不正确的;逐个判断之后,可得出答案.【详解】解:①∵(-1,0),(3,0)和(0,3)坐标都满足函数,∴①是正确的;②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线,因此②也是正确的;③根据函数的图象和性质,发现当或时,函数值y随x值的增大而增大,因此③也是正确的;④函数图象的最低点就是与x轴的两个交点,根据y=0,求出相应的x的值为或,因此④也是正确的;⑤从图象上看,存在函数值要大于当时的,因此⑤是不正确的;故选A理解“鹊桥”函数的意义,掌握“鹊桥”函数与与二次函数之间的关系;两个函数性质之间的联系和区别是解决问题的关键;二次函数与轴的交点、对称性、对称轴及最值的求法以及增减性应熟练掌握.5、D【分析】利用一元二次方程的根的判别式列出不等式即可求出k的取值范围.【详解】解:由题意得=(2k+1)2-4(k2-1)=4k+5>0解得:k>-故选D此题主要考查了一元二次方程的根的判别式,熟记根的判别式是解题的关键.6、B【分析】连接OD,利用勾股定理得到CD,利用垂线段最短得到当OC⊥AB时,OC最小,根据垂径定理计算即可.【详解】连接OD,如图,设圆O的半径为r,∵CD⊥OC,∴∠DCO=90°,∴CD=,∴当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时D、B重合,则由垂径定理可得:CD=CB=AC=AB=1,∴CD的最大值为1.故答案为:1.本题考查垂径定理和勾股定理,作辅助线构造直角三角形应用勾股定理,并熟记垂径定理内容是解题的关键.7、D【分析】根据中心对称图形的定义:把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,逐一判断即可.【详解】解:A选项不是中心对称图形,故本选项不符合题意;B选项不是中心对称图形,故本选项不符合题意;C选项不是中心对称图形,故本选项不符合题意;D选项是中心对称图形,故本选项符合题意;故选D.此题考查的是中心对称图形的识别,掌握中心对称图形的定义是解决此题的关键.8、C【分析】先提取二次项系数,然后再进行配方即可.【详解】.故选:C.考查了将一元二次函数化成y=a(x-h)2+k的形式,解题关键是正确配方.9、B【分析】直接把点代入反比例函数解析式即可得出k的值.【详解】∵反比例函数的图象经过点,
∴,解得:.
故选:B.本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.10、D【分析】连接AD,根据想的垂直平分线的性质得到DA=DB,DB=DC,根据等腰三角形的性质计算即可.【详解】解:连接AD,∵点D为线段AB与线段BC的垂直平分线的交点,∴DA=DB,DB=DC,∴设∠DAC=x°,则∠DCA=x°,∠DAB=∠ABD=(35+x)°∠ADB=180°-2(35+x)°∴∠BDC+∠ADB+∠DAC+∠DCA=180°,∠BDC+180-2(35+x)+x+x=180∴∠BDC=70°故选:D.本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.11、D【分析】如果过O作OC⊥AB于D,交折叠前的AB弧于C,根据折叠后劣弧恰好经过圆心O,根据垂径定理及勾股定理即可求出AD的长,进而求出AB的长.【详解】解:如图,过O作OC⊥AB于D,交折叠前的AB弧于C,
根据折叠后劣弧恰好经过圆心O,那么可得出的是OD=CD=2,
直角三角形OAD中,OA=4,OD=2,
∴AD=∴AB=2AD=,故选:D.本题考查了垂径定理和勾股定理的综合运用,利用好条件:劣弧折叠后恰好经过圆心O是解题的关键.12、B【分析】根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B=30°,从而得出答案.【详解】在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°-∠B-∠C=60°,由作图可知MN为AB的中垂线,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC-∠DAB=30°,故选B.本题主要考查作图-基本作图,熟练掌握中垂线的作图和性质是解题的关键.二、填空题(每题4分,共24分)13、【分析】过D点作x轴的垂线交x轴于E点,可得到四边形DBAE和三角形OBC的面积相等,通过面积转化,可求出k的值.【详解】解:过D点作x轴的垂线交x轴于E点,∵△ODE的面积和△OAC的面积相等.的面积与四边形的面积相等,∴四边形DEAB=8,设D点的横坐标为x,纵坐标就为∵D为OB的中点.∴∴四边形DEAB的面积可表示为:∴故答案为:本题考查反比例函数的综合运用,关键是知道反比例函数图象上的点和坐标轴构成的三角形面积的特点以及根据面积转化求出k的值.14、2【分析】作DG⊥BC于G,则DG=AC=6,CG=AD=4,由平行线得出△ADF∽△BEF,得出==2,求出BE=AD=2,由平行线的性质和三角函数定义求出AB=C=10,由勾股定理得出BC=8,求出EG=BC﹣BE﹣CG=2,再由勾股定理即可得出答案.【详解】解:作DG⊥BC于G,则DG=AC=6,CG=AD=4,∵AD∥BC,∴△ADF∽△BEF,∴==2,∴BE=AD=2,∵AD∥BC,∴∠ABC=∠DAB,∵∠C=90°,∴sin∠ABC==sin∠DAB=,∴AB=AC=×6=10,∴BC==8,∴EG=BC﹣BE﹣CG=8﹣2﹣4=2,∴DE===2;故答案为:2.本题考查了相似三角形的判定与性质、平行线的性质以及解直角三角形等知识;证明三角形相似是解题的关键.15、1s或3s【解析】根据题意可以得到15=﹣5x2+20x,然后求出x的值,即可解答本题.【详解】∵y=﹣5x2+20x,∴当y=15时,15=﹣5x2+20x,得x1=1,x2=3,故答案为1s或3s.本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质和一元二次方程的知识解答.16、【分析】根据题意说明PB1∥A2B3,A1B1∥A2B2,从而说明△BB1P∽△BA2B3,△BB1Q∽△BB2A2,再得到PB1和A2B3的关系以及QB1和A2B2的关系,根据A2B3=A2B2,得到PB1和QB1的比值.【详解】解:∵△ABB1,△A1B1B2,△A2B2B3是全等的等边三角形,∴∠BB1P=∠B3,∠A1B1B2=∠A2B2B3,∴PB1∥A2B3,A1B1∥A2B2,∴△BB1P∽△BA2B3,△BB1Q∽△BB2A2,∴,,∴,,∵,∴PB1∶QB1=A2B3∶A2B2=2:3.故答案为:.本题考查了相似三角形的判定和性质,等边三角形的性质,平行线的判定,正确的识别图形是解题的关键.17、0.1【解析】大量重复试验下摸球的频率可以估计摸球的概率,据此求解.【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在0.1附近,故摸到白球的频率估计值为0.1;故答案为:0.1.本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.18、(-1,2)或(1,-2);(-3,-1)或(3,1)【分析】利用以原点为位似中心,相似比为k,位似图形对应点的坐标的比等于k或−k,分别把A,B点的横纵坐标分别乘以或−即可得到点B′的坐标.【详解】∵以原点O为位似中心,相似比为,把△ABO缩小,∴的对应点A′的坐标是(-1,2)或(1,-2),点B(−9,−3)的对应点B′的坐标是(−3,−1)或(3,1),故答案为:(-1,2)或(1,-2);(-3,-1)或(3,1).本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.三、解答题(共78分)19、(1);(2)【分析】(1)利用特殊角的三角函数值分别计算每一项,再把结果相加减;(2)先求出的值,再根据特殊角的三角函数求出的度数,即可求出的度数.【详解】解:(1)原式====;(2)∵,∴,∴,∴.本题主要考查了特殊角的三角函数值的混合运算.熟记各种特殊角的三角函数值是解决此题的关键.20、(1)x的值为12;(2)这个苗圃的面积不能是120平方米,理由见解析.【分析】(1)用x表示出矩形的长为30-2x,利用矩形面积公式建立方程求解,根据平行于墙的边长不能大于18米,舍去不符合题意的解;(2)根据面积120平方米建立方程,若方程有解,则可以达到120平米,否则不能.【详解】解:(1)根据题意得,化简得,或∴,当时,平行于墙的一边为30-2x=6<18,符合题意;当时,平行于墙的一边为30-2x=24>18,不符合题意,舍去.故x的值为12.(2)根据题意得化简得,∴方程无实数根故这个苗圃的面积不能是120平方米.本题考查一元二次方程的应用:面积问题,根据面积公式列出一元二次方程是解题的关键.21、(1)证明见解析;(2)BC=1;【分析】(1)连接OB,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,证出∠PBA+∠OBA=90°,即可得出结论;(2)证明△ABC∽△PBO,得出对应边成比例,即可求出BC的长.【详解】(1)连接OB,如图所示:∵AC是⊙O的直径,∴∠ABC=90°,∴∠CBO+∠OBA=90°,∵OC=OB,∴∠C=∠CBO,∴∠C+∠OBA=90°,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(2)∵⊙O的半径为,∴OB=,AC=2,∵OP∥BC,∴∠C=∠CBO=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴,即,∴BC=1.本题考查了切线的判定与性质、圆周角定理、平行线的性质、相似三角形的判定与性质;熟练掌握圆周角定理、切线的判定是解决问题的关键.22、∠C=57°.【分析】此题根据圆周角与圆心角的关系求解即可.【详解】连接OA,OB,∵PA,PB分别与⊙O相切于A,B点,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣66°=114°,由圆周角定理得,∠C=∠AOB=57°.此题考查同圆中圆周角与圆心角的关系和切线相关知识,难度一般.23、(1)y=﹣x2+2x+3;(2)存在,;(3)①;②Q点坐标为(0,)或(0,)或(0,1)或(0,3).【分析】(1)用待定系数法求解析式;(2)作PM⊥x轴于M,作PN⊥y轴于N,当∠POB=∠POC时,△POB≌△POC,设P(m,m),则m=﹣m2+2m+3,可求m;(3)分类讨论:①如图,当∠Q1AB=90°时,作AE⊥y轴于E,证△DAQ1∽△DOB,得,即;②当∠Q2BA=90°时,∠DBO+∠OBQ2=∠OBQ2+∠OQ2B=90°,证△BOQ2∽△DOB,得,;③当∠AQ3B=90°时,∠AEQ3=∠BOQ3=90°,证△BOQ3∽△Q3EA,,即;【详解】解:(1)把A(1,4)代入y=kx+6,∴k=﹣2,∴y=﹣2x+6,由y=﹣2x+6=0,得x=3∴B(3,0).∵A为顶点∴设抛物线的解析为y=a(x﹣1)2+4,∴a=﹣1,∴y=﹣(x﹣1)2+4=﹣x2+2x+3(2)存在.当x=0时y=﹣x2+2x+3=3,∴C(0,3)∵OB=OC=3,OP=OP,∴当∠POB=∠POC时,△POB≌△POC,作PM⊥x轴于M,作PN⊥y轴于N,∴∠POM=∠PON=45°.∴PM=PN∴设P(m,m),则m=﹣m2+2m+3,∴m=,∵点P在第三象限,∴P(,).(3)①如图,当∠Q1AB=90°时,作AE⊥y轴于E,∴E(0,4)∵∠DAQ1=∠DOB=90°,∠ADQ1=∠BDO∴△DAQ1∽△DOB,∴,即,∴DQ1=,∴OQ1=,∴Q1(0,);②如图,当∠Q2BA=90°时,∠DBO+∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025施工员考试管理实务模拟试题及答案
- 2025年主管护师考试精彩案例试题及答案
- 2024年康复医学治疗技术士考试专业知识题库及解析与答案
- 2025年起重机械指挥证考试题库及答案
- 2025年中级银行从业资格之中级银行业法律法规与综合能力押题练习试卷及答案
- 2025年北京考试题库及答案
- 2025年公路水运工程助理试验检测师道路工程模拟试卷专业试题集含答案
- 皮包营销方案
- 盘州咨询网络推广方案
- 咨询服务方案包括哪些
- 天津市河东区2024-2025学年上学期第一次月考七年级数学试题(含答案解析)
- 《大数据导论(第2版)》全套教学课件
- 高考生物选择性必修1稳态与调节基础知识填空默写(每天打卡)
- 壳聚糖的生物相容性与安全性评价
- DB32T3916-2020建筑地基基础检测规程
- 体育与健康(水平一)《非移动性技能(16课时)》大单元教学计划
- 小班区域观察记录表30篇
- 转子泵培训课件
- 司美格鲁肽学习课件
- 07FK02防空地下室通风设备安装图集
- 第四讲 坚持以人民为中心PPT习概论2023优化版教学课件
评论
0/150
提交评论