




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
晋中市重点中学2026届八年级数学第一学期期末质量检测试题检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.顺次连接矩形各边中点得到的四边形是()A.平行四边形 B.矩形 C.菱形 D.正方形2.学校举行图书节义卖活动,将所售款项捐给其他贫困学生,在这次义卖活动中,某班级售书情况如下表:售价元元元元数目本本本本下列说法正确的是()A.该班级所售图书的总收入是元 B.在该班级所传图书价格组成的一组数据中,中位数是元C.在该班级所售图书价格组成的一组数据中,众数是元 D.在该班级所售图书价格组成的一组数据中,平均数是元3.如图,中,与的平分线交于点,过点作交于点,交于点,那么下列结论:①是等腰三角形;②;③若,;④.其中正确的有()A.个 B.个 C.个 D.个4.在Rt△ABC中,∠C=90°,AB=13,AC=12,则△ABC的面积为()A.5 B.60 C.45 D.305.如图,从一个大正方形中截去面积为和的两个正方形,则剩余部分的面积为()A. B.C. D.6.已知图中的两个三角形全等,则∠α等于()A.72° B.60° C.58° D.48°7.小王家距上班地点18千米,他用乘公交车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程的2倍还多9千米.他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的.小王用自驾车方式上班平均每小时行驶()A.26千米 B.27千米 C.28千米 D.30千米8.已知等腰三角形的一个外角等于,则它的顶角是()A. B. C.或 D.或9.在实数0、、、、、、中,无理数有()个A.1 B.2 C.3 D.410.已知一粒米的质量是0.00021kg,这个数用科学记数法表示为()A.kg B.kg C.kg D.kg二、填空题(每小题3分,共24分)11.已知m2﹣mn=2,mn﹣n2=5,则3m2+2mn﹣5n2=________.12.已知多项式,那么我们把和称为的因式,小汪发现当或时,多项式的值为1.若有一个因式是(为正数),那么的值为______,另一个因式为______.13.若关于x的分式方程的解为正数,则满足条件的非负整数k的值为____.14.甲、乙两人同时从同一地点出发,已知甲往东走了4km,乙往南走了3km,此时甲、乙两人相距______km.15.如图,在四边形ABCD中,AB=AC,BC=BD,若,则______.(用含的代数式).16.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,若CD=3,则AB=______________.17.将一副三角板如图叠放,则图中∠AOB的度数为_____.18.若是一个完全平方式,则的值是______.三、解答题(共66分)19.(10分)如图1,直线AB∥CD,直线l与直线AB,CD相交于点E,F,点P是射线EA上的一个动点(不包括端点)(1)若∠CFE=119°,PG交∠FEB的平分线EG于点G,∠APG=150°,则∠G的大小为.(2)如图2,连接PF.将△EPF折叠,顶点E落在点Q处.①若∠PEF=48°,点Q刚好落在其中的一条平行线上,请直接写出∠EFP的大小为.②若∠PEF=75°,∠CFQ=∠PFC,求∠EFP的度数.20.(6分)如图,在坐标系的网格中,且三点均在格点上.(1)C点的坐标为;(2)作关于y轴的对称三角形;(3)取的中点D,连接A1D,则A1D的长为.21.(6分)在中,,,,垂足为,且.,其两边分别交边,于点,.(1)求证:是等边三角形;(2)求证:.22.(8分)“太原市批发市场”与“西安市批发市场”之间的商业往来频繁,如图,“太原市批发市场”“西安市批发市场”与“长途汽车站”在同一线路上,每天中午12:00一辆客车由“太原市批发市场”驶往“长途汽车站”,一辆货车由“西安市批发市场”驶往“太原市批发市场”,假设两车同时出发,匀速行驶,图2分别是客车、货车到“长途汽车站”的距离与行驶时间之间的函数图像.请你根据图象信息解决下列问题:(1)由图2可知客车的速度为km/h,货车的速度为km/h;(2)根据图2直接写出直线BC的函数关系式为,直线AD的函数关系式为;(3)求点B的坐标,并解释点B的实际意义.23.(8分)如图,∠AFD=∠1,AC∥DE,(1)试说明:DF∥BC;(2)若∠1=68°,DF平分∠ADE,求∠B的度数.24.(8分)(1)已知,求的值.(2)化简:,并从±2,±1,±3中选择一个合适的数求代数式的值.25.(10分)如图所示,在△ABC中,BE平分∠ABC,DE∥BC.(1)试猜想△BDE的形状,并说明理由;(2)若∠A=35°,∠C=70°,求∠BDE的度数.26.(10分)如图,已知等腰三角形ABC中,AB=AC,点D,E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.(1)求证:∠ABE=∠ACD;(2)求证:过点A、F的直线垂直平分线段BC.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据三角形的中位线定理,得新四边形各边都等于原四边形的对角线的一半,进而可得连接对角线相等的四边形各边中点得到的四边形是菱形.【详解】解:如图,矩形中,分别为四边的中点,四边形是平行四边形,四边形是菱形.故选C.【点睛】本题主要考查了矩形的性质、菱形的判定,以及三角形中位线定理,关键是掌握三角形的中位线定理及菱形的判定.2、A【分析】把所有数据相加可对A进行判断;利用中位数和众数的定义对B、C进行判断;利用平均数的计算公式计算出这组数据的平均,从而可对D进行判断.【详解】A、该班级所售图书的总收入为3×14+4×11+5×10+6×15=226,所以A选项正确;B、共50本书,第25个数为4,第26个数为5,所以这组数据的中位数为4.5,所以B选项错误;C、这组数据的众数为6,所以C选项错误;D、这组数据的平均数为,所以D选项错误.故选:A.【点睛】本题考查计算中位数,众数和平均数,熟练掌握它们的计算方法是解题的关键.3、B【分析】根据角平分线的定义和平行线的性质可得∠DBF=∠DFB,∠ECF=∠EFC,然后利用等角对等边即可得出DB=DF,EF=EC,从而判断①和②;利用三角形的内角和定理即可求出∠ABC+∠ACB,然后利用角平分线的定义和三角形的内角和定理即可求出∠BFC,从而判断③;然后根据∠ABC不一定等于∠ACB即可判断④.【详解】解:∵与的平分线交于点,∴∠DBF=∠FBC,∠ECF=∠FCB∵∴∠DFB=∠FBC,∠EFC=∠FCB∴∠DBF=∠DFB,∠ECF=∠EFC∴DB=DF,EF=EC,即是等腰三角形,故①正确;∴DE=DF+EF=BD+CE,故②正确;∵∠A=50°∴∠ABC+∠ACB=180°-∠A=130°∴∠FBC+∠FCB=(∠ABC+∠ACB)=65°∴∠BFC=180°-(∠FBC+∠FCB)=115°,故③正确;∵∠ABC不一定等于∠ACB∴∠FBC不一定等于∠FCB∴BF不一定等于CF,故④错误.正确的有①②③,共3个故选B.【点睛】此题考查的是角平分线的定义、平行线的性质、等腰三角形的判定和三角形的内角和定理,掌握角平分线、平行线和等腰三角形三者之间的关系是解决此题的关键.4、D【分析】在Rt△ABC中,根据勾股定理可求得BC的长,然后根据三角形的面积公式即可得出结论.【详解】解:∵AB=13,AC=12,∠C=90°,∴BC==5,∴△ABC的面积=×12×5=30,故选:D.【点睛】本题考查了勾股定理以及三角形的面积,掌握基本性质是解题的关键.5、D【分析】根据题意利用正方形的面积公式即可求得大正方形的边长,则可求得阴影部分的面积进而得出答案.【详解】从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形,
大正方形的边长是,留下部分(即阴影部分)的面积是:(cm2).故选:D.【点睛】本题主要考查了二次根式的应用、完全平方公式的应用,正确求出阴影部分面积是解题关键.6、D【分析】直接利用全等三角形的性质得出对应角进而得出答案.【详解】解:∵图中的两个三角形全等,∴∠α=180°﹣60°﹣72°=48°.故选D.【点睛】本题考查全等三角形的性质,解题的关键是掌握全等三角形的性质.7、B【分析】设小王用自驾车方式上班平均每小时行驶x千米,根据已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的,可列方程求解.【详解】∵小王家距上班地点18千米,设小王用自驾车方式上班平均每小时行驶x千米,∴小王从家到上班地点所需时间t=小时;∵他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,∴他乘公交车从家到上班地点所需时间t=,∵乘公交车方式所用时间是自驾车方式所用时间的,∴=×,解得x=27,经检验x=27是原方程的解,且符合题意.即:小王用自驾车方式上班平均每小时行驶27千米.故答案选:B.【点睛】本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.8、D【分析】根据等腰三角形的性质定理与三角形的内角和定理,分两种情况:①若等腰三角形顶角的外角等于110°,②若等腰三角形底角的外角等于110°,分别求出答案即可.【详解】①若等腰三角形顶角的外角等于110°,则它的顶角是:180°-110°=70°,②若等腰三角形底角的外角等于110°,则它的顶角是:180°-2×(180°-110°)=40°,∴它的顶角是:或.故选D.【点睛】本题主要考查等腰三角形的性质定理与三角形的内角和定理,掌握等腰三角形的性质定理是解题的关键.9、C【分析】根据无理数的定义即可得.【详解】在这些实数中,无理数为,,,共有3个,故选:C.【点睛】本题考查了无理数,熟记定义是解题关键.10、A【分析】科学记数法的形式是:,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数。本题小数点往右移动到2的后面,所以【详解】解:0.00021故选A.【点睛】本题考查的知识点是用科学记数法表示绝对值较小的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.二、填空题(每小题3分,共24分)11、31【解析】试题解析:根据题意,故有∴原式=3(2+mm)+2mn−5(mn−5)=31.故答案为31.12、1【分析】根据题意类比推出,若是的因式,那么即当时,.将代入,即可求出a的值.注意题干要求a为正数,再将求得的解代入原多项式,进行因式分解即可.【详解】∵是的因式,∴当时,,即,∴,∴,∵为正数,∴,∴可化为,∴另一个因式为.故答案为1;【点睛】本题考查根据题意用类比法解题和因式分解的应用,注意题干中a的取值为正数是关键.13、1.【分析】首先解分式方程,然后根据方程的解为正数,可得x>1,据此求出满足条件的非负整数K的值为多少即可.【详解】∵,∴.∵x>1,∴,∴,∴满足条件的非负整数的值为1、1,时,解得:x=2,符合题意;时,解得:x=1,不符合题意;∴满足条件的非负整数的值为1.故答案为:1.【点睛】此题考查分式方程的解,解题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于1的值,不是原分式方程的解.14、5【解析】试题解析:如图,在Rt△OAB中,∵OA=4千米,OB=3千米,∴千米.所以甲、乙两人相距5千米.故答案为5.15、【分析】延长DA到E点,使AE=AC,连接BE,易证∠EAB=∠BAC,可得△AEB≌△ABC,则∠E=∠ACB=,BE=BC=BD,则∠BDE=∠E=,可证∠DBC=∠DAC=4-180°,即可求得∠BCD的度数.【详解】延长DA到E点,使AE=AC,连接BE∵AB=AC,∴∠ACB=∠ABC=,∠BAD=2∴∠BAC=180°-2,∠EAB=180°-2又AB=AB∴△AEB≌△ABC(SAS)∴∠E=∠ACB=,BE=BC=BD∴∠BDE=∠E=∴∠DBC=∠DAC=∠BAD-∠BAC=2-(180°-2)=4-180°∴∠BCD=故答案为:【点睛】本题考查的是等腰三角形的性质及三角形的全等,构造全等三角形是解答本题的关键.16、【分析】由已知可得∠BAC=60°,AD为∠BAC的平分线,过点D作DE⊥AB于E,则∠BAD=∠CAD=30°,DE=CD=3,易证△ADB是等腰三角形,且BD=2DE=6,利用等腰三角形的性质及勾股定理即可求得AB的长.【详解】∵在△ABC中,∠C=90°,∠B=30°,∴∠BAC=60°,由题意知AD是∠BAC的平分线,如图,过点D作DE⊥AB于E,∴∠BAD=∠CAD=30°,DE=CD=3,∴∠BAD=∠B=30°,∴△ADB是等腰三角形,且BD=2DE=6,∴BE=AE=,∴AB=2BE=,故答案为:.【点睛】本题考查了角平分线的性质、含30°角的直角三角形性质、等腰三角形的判定与性质,解答的关键是熟练掌握画角平分线的过程及其性质,会利用含30°角的直角三角形的性质解决问题.17、【分析】根据三角形的外角的性质计算即可.【详解】由三角形的外角的性质可知,∠AOB=∠CAO-∠B=60°-45°=15°,
故答案为:15°.【点睛】本题考查了三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.18、【分析】利用完全平方公式的结构特征判断即可得到k的值.【详解】解:∵是一个完全平方式,∴k=±2×2×3=±12故答案为:±12【点睛】本题考查的完全平方式,中间项是±两个值都行,别丢掉一个.三、解答题(共66分)19、(1)29.5°;(2)①42°或66°;②35°或63°.【分析】(1)根据平行线的性质和三角形的内角和即可得到结论;(2)①Ⅰ、当点Q落在AB上时,利用三角形内角和定理计算即可.Ⅱ、当点Q落在CD上时,∠PQF=∠PEF=48°,利用平行线的性质,三角形的内角和定理计算即可.②分两种情形:Ⅰ、当点Q在平行线AB,CD之间时.Ⅱ、当点Q在CD下方时,分别构建方程即可解决问题.【详解】(1)∵直线AB∥CD,∴∠BEF=∠CFE=119°,∠PEF=180°﹣∠CFE=61°,∵EG平分∠BEF,∴∠FEG=∠BEF=59.5°,∵∠APG=150°,∴∠EPF=30°,∴∠G=180°﹣30°﹣61°﹣59.5°=29.5°;故答案为:29.5°;(2)①Ⅰ、当点Q落在AB上时,易证PF⊥AB,可得∠EPF=90°,∴∠EFP=90°﹣∠PEF=90°﹣48°=42°.Ⅱ、当点Q落在CD上时,∠PQF=∠PEF=48°,∵AB∥CD,∴∠EPQ+∠PQF=180°,∴∠EPQ=132°,∵∠EPF=∠QPF,∴∠EPF=×132°=66°,∴∠EFP=180°﹣48°﹣66°=66°.综上所述,满足条件的∠EFP的值为42°或66°,故答案为:42°或66°.②Ⅰ、当点Q在平行线AB,CD之间时.设∠PFQ=x,由折叠可知∠EFP=x,∵2∠CFQ=∠CFP,∴∠PFQ=∠CFQ=x,∴75°+3x=180°,∴x=35°,∴∠EFP=35°.Ⅱ、当点Q在CD下方时,设∠PFQ=x,由折叠可知∠EFP=x,∵2∠CFQ=∠CFP,∴∠PFC=x,∴75°+x+x=180°,解得x=63°,∴∠EFP=63°.【点睛】本题考查了三角形的角度问题,掌握平行线的性质和三角形的内角和定理是解题的关键.20、(1)(4,-2);(2)作图见解析;(3).【分析】(1)根据图象可得C点坐标;(2)根据关于y轴对称的点,横坐标互为相反数,纵坐标相等描出三个顶点,再依次连接即可;(3)先利用勾股定理逆定理证明为直角三角形,再根据直角三角形斜边上的中线等于斜边的一半即可求得A1D.【详解】解:(1)由图可知,C(4,-2)故答案为:(4,-2);(2)如图所示,(3)由图可知,∴,即为直角三角形,∴.
故答案为:.【点睛】本题考查坐标与图形变化轴对称,勾股定理逆定理,直角三角形斜边上的中线.(3)中能证明三角形为直角三角形,并理解直角三角形斜边上的中线等于斜边的一半是解题关键.21、(1)详见解析;(2)详见解析.【分析】(1)连接BD,根据等腰三角形性质得∠BAD=∠DAC=×120°,再根据等边三角形判定可得结论;(2)根据等边三角形性质得∠ABD=∠ADB=60°,BD=AD,证△BDE≌△ADF(ASA)可得.【详解】(1)证明:连接BD,
∵AB=AC,AD⊥BC,
∴∠BAD=∠DAC=∠BAC,
∵∠BAC=120°,
∴∠BAD=∠DAC=×120°=60°,
∵AD=AB,
∴△ABD是等边三角形;
(2)证明:∵△ABD是等边三角形,
∴∠ABD=∠ADB=60°,BD=AD
∵∠EDF=60°,
∴∠BDE=∠ADF,
在△BDE与△ADF中,
,
∴△BDE≌△ADF(ASA),
∴BE=AF.【点睛】本题考查了全等三角形的性质定理与判定定理、等边三角形的性质,解决本题的关键是证明△BDE≌△ADF.22、(1)60,30;(2),;(3)点的坐标为,点代表的实际意义是此时客车和货车相遇.【分析】(1)由图象可知客车6小时行驶的路程是360千米,货车2小时行驶的路程为60千米,从而可以求得客车和货车的速度;(2)先求出点D的横坐标,然后利用待定系数法,利用点(0,360)和(6,0)求出直线BC的解析式,利用点A和点D坐标求出直线AD的解析式,即可得到答案.(3)把直线BC和直线AD联合,组成方程组,即可求出点B的坐标,然后得到答案.【详解】解:由图象可得,客车的速度是:360÷6=60km/h,货车的速度是:km/h,故答案为:60;30.根据题意,货车行驶全程所用的时间为:小时;∴点D的坐标为(14,360);设直线BC为,把点(0,360)和(6,0)代入,得,解得:,∴直线BC为:;设直线AD为,把点A(2,0)和点D(14,360)代入,得,解得:,∴直线AD为:;故答案为:,;由知,客车由“太原市批发市场”到“长途汽车站”对应的函数关系式为:货车由“长途汽车站”到“太原市批发市场”对应的函数关系式为:,解得:;点的坐标为:;∴点代表的实际意义是此时客车和货车相遇.【点睛】本题考查一次函数的应用,以及根据函数图像获取信息,解答此类问题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.23、(1)证明见解析;(2)68°.【解析】试题分析:(1)由AC∥DE得∠1=∠C,而∠AFD=∠1,故∠AFD=∠C,故可得证;(2)由(1)得∠EDF=68°,又DF平分∠ADE,所以∠EDA=68°,结合DF∥BC即可求出结果.试题解析:(1)∵AC∥DE,∴∠1=∠C,∵∠AFD=∠1,∴∠AFD=∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 一年级语文上册 第六单元 语文园地六说课稿+反思 新人教版
- 8.2《磁场对电流的作用》说课稿-教科版物理九年级上学期
- DPMAS治疗课件金宝
- 2025年母婴护理期末题库及答案
- 欢乐的山寨(欣赏 阳光羌娃)说课稿小学音乐西师大版六年级上册-西师大版
- 2024年中国石油装备制造创新中心高校毕业生招聘笔试真题
- 2024年眉山市仁寿县人民医院招聘专业技术人员笔试真题
- 2025年新版中国移动笔试题库及答案
- 数字孪生建模方法研究-洞察及研究
- 物联网对金属制造效率影响-洞察及研究
- 2025年《治安管理处罚法》新修订课件
- 【课件】有理数的加法(第1课时+有理数的加法法则)(课件)数学人教版2024七年级上册
- 透析患者血磷控制健康宣教
- DB1331∕T 034-2022 建筑与市政工程无障碍设计图集
- 2025年江苏省苏州市中考数学模拟试卷(十三)(含答案)
- 项目制用工管理制度
- 2025年中国跨境电商SaaS市场行业报告
- 2025至2030年中国税务信息化行业市场研究分析及发展规模预测报告
- 2025叉车理论考试试题及答案
- 垫资柴油购销合同协议
- 2025-2030国内地热能行业市场发展现状及竞争格局与投资发展前景研究报告
评论
0/150
提交评论