




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届山西省九级九年级数学第一学期期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)2.下列是一元二次方程的是()A. B. C. D.3.如图,为的直径,点为上一点,,则劣弧的长度为()A. B.C. D.4.下列事件中,是随机事件的是()A.三角形任意两边之和大于第三边B.任意选择某一电视频道,它正在播放新闻联播C.a是实数,|a|≥0D.在一个装着白球和黑球的袋中摸球,摸出红球5.在同一直角坐标系中,二次函数与一次函数的大致图象可能()A. B.C. D.6.下列说法中,不正确的是()A.所有的菱形都相似 B.所有的正方形都相似C.所有的等边三角形都相似 D.有一个角是100°的两个等腰三角形相似7.用配方法解一元二次方程时,原方程可变形为()A. B. C. D.8.如图平行四边变形ABCD中,E是BC上一点,BE∶EC=2∶3,AE交BD于F,则S△BFE∶S△FDA等于()A.2∶5 B.4∶9 C.4∶25 D.2∶39.用配方法解一元二次方程,变形正确的是()A. B. C. D.10.如图,是的直径,点是上两点,且,连接,过点作,交的延长线于点,垂足为,若,则的半径为()A. B. C. D.11.已知,是圆的半径,点,在圆上,且,若,则的度数为()A. B. C. D.12.图所示,已知二次函数的图象正好经过坐标原点,对称轴为直线.给出以下四个结论:①;②;③;④.正确的有()A.个 B.个 C.个 D.个二、填空题(每题4分,共24分)13.将抛物线先向右平移个单位,再向下平移个单位,所得到的抛物线的函数解析式是____.14.如图,在△ABC中,∠BAC=90°,∠B=60°,AD⊥BC于点D,则△ABD与△ADC的面积比为________.15.在不透明的袋中装有大小和质地都相同的个红球和个白球,某学习小组做“用频率估计概率"的试验时,统计了摸到红球出现的频率并绘制了折线统计图,则白球可能有_______个.16.如图,点A的坐标为(4,2).将点A绕坐标原点O旋转90°后,再向左平移1个单位长度得到点A′,则过点A′的正比例函数的解析式为_____.17.已知Rt△ABC中,AC=3,BC=4,以C为圆心,以r为半径作圆.若此圆与线段AB只有一个交点,则r的取值范围为_____.18.如图,在菱形中,,,点,,分别为线段,,上的任意一点,则的最小值为__________.三、解答题(共78分)19.(8分)某商场试销一种成本为每件60元的服装,经试销发现,每天的销售量(件)与销售单价(元)的关系符合次函数.(1)如果要实现每天2000元的销售利润,该如何确定销售单价?(2)销售单价为多少元时,才能使每天的利润最大?其每天的最大利润是多少?20.(8分)如图,在△ABC中,CD⊥AB,垂足为点D.若AB=12,CD=6,tanA=,求sinB+cosB的值.21.(8分)为加强我市创建文明卫生城市宣传力度,需要在甲楼A处到E处悬挂一幅宣传条幅,在乙楼顶部D点测得条幅顶端A点的仰角∠ADF=45°,条幅底端E点的俯角为∠FDE=30°,DF⊥AB,若甲、乙两楼的水平距离BC为21米,求条幅的长AE约是多少米?(,结果精确到0.1米)22.(10分)为了解某小区居民使用共享单车次数的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数统计如下:使用次数05101520人数11431(1)这10位居民一周内使用共享单车次数的中位数是次,众数是次.(2)若小明同学把数据“20”看成了“30”,那么中位数,众数和平均数中不受影响的是.(填“中位数”,“众数”或“平均数”)(3)若该小区有2000名居民,试估计该小区居民一周内使用共享单车的总次数.23.(10分)某商店如果将进货价为8元的商品按每件11元售出,每天可销售211件.现在采取提高售价,减少售货量的方法增加利润,已知这种商品每涨价1.5元,其销量减少11件.(1)若涨价x元,则每天的销量为____________件(用含x的代数式表示);(2)要使每天获得711元的利润,请你帮忙确定售价.24.(10分)在毕业晚会上,同学们表演哪一类型的节目由自己摸球来决定.在一个不透明的口袋中,装有除标号外其它完全相同的A、B、C三个小球,表演节目前,先从袋中摸球一次(摸球后又放回袋中),如果摸到的是A球,则表演唱歌;如果摸到的是B球,则表演跳舞;如果摸到的是C球,则表演朗诵.若小明要表演两个节目,则他表演的节目不是同一类型的概率是多少?25.(12分)某工厂设计了一款成本为20元/件的工艺品投放市场进行试销,经过调查,得到如下数据:销售单价(元/件)…30405060…每天销售量(件)…500400300200…(1)研究发现,每天销售量与单价满足一次函数关系,求出与的关系式;(2)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润8000元?26.在菱形中,,延长至点,延长至点,使,连结,,延长交于点.(1)求证:;(2)求的度数.
参考答案一、选择题(每题4分,共48分)1、D【详解】试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ABO∽△A′B′O且=.∴==.∴A′E=AD=2,OE=OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵点A(―3,6)且相似比为,∴点A的对应点A′的坐标是(―3×,6×),∴A′(-1,2).∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).故答案选D.考点:位似变换.2、A【分析】用一元二次方程的定义,1看等式,2看含一个未知数,3看未知数次数是2次,4看二次项系数不为零,5看是整式即可.【详解】A、由定义知A是一元二次方程,B、不是等式则B不是一元二次方程,C、二次项系数a可能为0,则C不是一元二次方程,D、含两个未知数,则D不是一元二次方程.本题考查判断一元二次方程问题,关键是掌握定义,注意特点1看等式,2看含一个未知数,3看未知数次数是2次,4看二次项数系数不为零,5看是整式.3、A【分析】根据“直径所对圆周角为90°”可知为直角三角形,在可求出∠BAC的正弦值,从而得到∠BAC的度数,再根据圆周角定理可求得所对圆心角的度数,最后利用弧长公式即可求解.【详解】∵AB为直径,AO=4,∴∠ACB=90°,AB=8,在中,AB=8,BC=,∴sin∠BAC=,∵sin60°=,∴∠BAC=60°,∴所对圆心角的度数为120°,∴的长度=.故选:A.本题考查弧长的计算,明确圆周角定理,锐角三角函数及弧长公式是解题关键,注意弧长公式中的角度指的是圆心角而不是圆周角.4、B【分析】随机事件就是可能发生也可能不发生的事件,根据定义即可判断.【详解】A、三角形任意两边之和大于第三边是必然事件,故选项不合题意;B、任意选择某一电视频道,它正在播放新闻联播,是随机事件,故选项符合题意;C、a是实数,|a|≥0,是必然事件,故选项不合题意;D、在一个装着白球和黑球的袋中摸球,摸出红球,是不可能事件,故选项不合题意.故选:B.本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、C【分析】先分别根据二次函数和一次函数的图象得出a、c的符号,再根据两个函数的图象与y轴的交点重合,为点逐项判断即可.【详解】A、由二次函数的图象可知,由一次函数的图象可知,两个函数图象得出的a、c的符号不一致,则此项不符题意B、由二次函数的图象可知,由一次函数的图象可知,两个函数图象得出的a、c的符号不一致,则此项不符题意C、由二次函数的图象可知,由一次函数的图象可知,两个函数图象得出的a、c的符号一致,且都经过点,则此项符合题意D、由二次函数的图象可知,由一次函数的图象可知,两个函数图象得出的a、c的符号一致,但与y轴的交点不是同一点,则此项不符题意故选:C.本题考查了一次函数与二次函数的图象综合,熟练掌握一次函数与二次函数的图象特征是解题关键.6、A【分析】根据相似多边形的定义,即可得到答案.【详解】解:A、所有的菱形都相似,错误;B、所有的正方形都相似,正确;C、所有的等边三角形都相似,正确;D、有一个角是100°的两个等腰三角形相似,正确;故选:A.本题考查了相似多边形的定义,熟练掌握相似多边形的性质:对应角相等,对应边成比例是解题的关键.7、B【解析】试题分析:,,.故选B.考点:解一元二次方程-配方法.8、C【分析】由四边形ABCD是平行四边形,可得AD∥BE,由平行得相似,即△BEF∽△DAF,再利用相似比解答本题.【详解】∵,
∴,∵四边形是平行四边形,
∴,∥,
∴,,
∴,,故选:C.本题考查了相似三角形的判定与性质.正确运用相似三角形的相似比是解题的关键.9、B【分析】根据完全平方公式和等式的性质进行配方即可.【详解】解:故选:B.本题考查了配方法,其一般步骤为:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.10、D【分析】根据已知条件可知、都是含角的直角三角形,先利用含角的直角三角形的性质求得,再结合勾股定理即可求得答案.【详解】解:连接、,如图:∵∴∴∴在中,∵是的直径∴∴在中,,即∴∴∴∴的半径为.故选:D本题考查了圆的一些基本性质、含角的直角三角形的性质以及勾股定理,添加适当的辅助线可以更顺利地解决问题.11、D【分析】连接OC,根据圆周角定理求出∠AOC,再根据平行得到∠OCB,利用圆内等腰三角形即可求解.【详解】连接CO,∵∴∠AOC=2∵∴∠OCB=∠AOC=∵OC=BO,∴=∠OCB=故选D.此题主要考查圆周角定理,解题的关键是熟知圆的基本性质及圆周角定理的内容.12、C【分析】由抛物线开口方向得到a<0以及函数经过原点即可判断①;根据x=-1时的函数值可以判断②;由抛物线的对称轴方程得到为b=3a,用求差法即可判断③;根据抛物线与x轴交点个数得到△=b2-4ac>0,则可对④进行判断.【详解】∵抛物线开口向下,
∴a<0,
∵抛物线经过原点,
∴c=0,
则abc=0,所以①正确;
当x=-1时,函数值是a-b+c>0,则②正确;
∵抛物线的对称轴为直线x=-<0,
∴b=3a,
又∵a<0,
∴a-b=-2a>0∴a>b,则③错误;
∵抛物线与x轴有2个交点,
∴△=b2-4ac>0,即4ac-b2<0,所以④正确.
故选:C本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.二、填空题(每题4分,共24分)13、【分析】根据题意先确定出原抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出新图象的顶点坐标,然后写出即可.【详解】解:抛物线的顶点坐标为(0,0),向右平移1个单位,再向下平移2个单位后的图象的顶点坐标为(1,-2),所以得到图象的解析式为.故答案为:.本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.14、1:1【分析】根据∠BAC=90°,可得∠BAD+∠CAD=90°,再根据垂直的定义得到∠ADB=∠CDA=90°,利用三角形的内角和定理可得∠B+∠BAD=90°,根据同角的余角相等得到∠B=∠CAD,利用两对对应角相等两三角形相似得到△ABD∽△CAD,由tanB=tan60°=,再根据相似三角形的面积比等于相似比(对应边的之比)的平方即可求出结果.【详解】:∵∠BAC=90°,
∴∠BAD+∠CAD=90°,
又∵AD⊥BC,
∴∠ADB=∠CDA=90°,
∴∠B+∠BAD=90°,
∴∠B=∠CAD,又∠ADB=∠CDA=90°,
∴△ABD∽△CAD,
∴,
∵∠B=60°,
∴,
∴.
故答案为1:1.本题考查了相似三角形的判定与性质,熟练掌握相似比即为对应边之比,周长比等于相似比,面积之比等于相似比的平方是解决问题的关键.15、6【分析】从表中的统计数据可知,摸到红球的频率稳定在0.33左右,根据红球的概率公式得到相应方程求解即可;【详解】由统计图,知摸到红球的频率稳定在0.33左右,∴,经检验,n=6是方程的根,故答案为6.此题主要考查频率与概率的相关计算,熟练掌握,即可解题.16、y=﹣x或y=-4x【解析】分析:直接利用旋转的性质结合平移的性质得出对应点位置,再利用待定系数法求出正比例函数解析式.详解:当点A绕坐标原点O逆时针旋转90°后,再向左平移1个单位长度得到点A′,则A′(-3,4),设过点A′的正比例函数的解析式为:y=kx,则4=-3k,解得:k=-,则过点A′的正比例函数的解析式为:y=-x,同理可得:点A绕坐标原点O顺时针旋转90°后,再向左平移1个单位长度得到点A′,此时A′(1,-4),设过点A′的正比例函数的解析式为:y=k′x,则-4=k′,则过点A′的正比例函数的解析式为:y=-4x.故答案为y=﹣x或y=-4x.点睛:此题主要考查了旋转的性质、平移的性质、待定系数法求出正比例函数解析式,正确得出对应点坐标是解题关键.17、3<r≤1或r=.【解析】根据直线与圆的位置关系得出相切时有一交点,再结合图形得出另一种有一个交点的情况,即可得出答案.【详解】解:过点C作CD⊥AB于点D,∵AC=3,BC=1.∴AB=5,如果以点C为圆心,r为半径的圆与斜边AB只有一个公共点,当直线与圆相切时,d=r,圆与斜边AB只有一个公共点,∴CD×AB=AC×BC,∴CD=r=,当直线与圆如图所示也可以有一个交点,∴3<r≤1,故答案为3<r≤1或r=.此题主要考查了直线与圆的位置关系,结合题意画出符合题意的图形,从而得出答案,此题比较容易漏解.18、【分析】根据菱形的对称性,在AB上找到点P关于BD的对称点,过点作Q⊥CD于Q,交BD于点K,连接PK,过点A作AE⊥CD于E,根据垂线段最短和平行线之间的距离处处相等,可得此时最小,且最小值为的长,,然后利用锐角三角函数求AE即可.【详解】解:根据菱形的对称性,在AB上找到点P关于BD的对称点,过点作Q⊥CD于Q,交BD于点K,连接PK,过点A作AE⊥CD于E根据对称性可知:PK=K,∴此时=,根据垂线段最短和平行线之间的距离处处相等,∴此时最小,且最小值为的长,∵在菱形中,,∴,∠ADE=180°-∠A=60°在Rt△ADE中,AE=AD·sin∠ADE=∴即的最小值为故答案为.此题考查的是菱形的性质、求两线段之和的最值问题和锐角三角函数,掌握菱形的性质、垂线段最短、平行线之间的距离处处相等和用锐角三角函数解直角三角形是解决此题的关键.三、解答题(共78分)19、(1)100元;(2)当销售单价定为105元时,可获得最大利润,最大利润是2025元.【分析】(1)根据题意列出方程,解一元二次方程即可;(2)先根据利润=每件的利润×销售量表示出利润,然后利用二次函数的性质求最大值即可.【详解】(1)依题意得:,解得或(不合题意).(2)若每天的利润为元,则,∴当销售单价定为105元时,可获得最大利润,最大利润是2025元.本题主要考查二次函数与一元二次方程的应用,掌握解一元二次方程的方法和二次函数的性质是解题的关键.20、.【分析】试题分析:先在Rt△ACD中,由正切函数的定义得tanA=,求出AD=4,则BD=AB﹣AD=1,再解Rt△BCD,由勾股定理得BC==10,sinB=,cosB=,由此求出sinB+cosB=.【详解】解:在Rt△ACD中,∵∠ADC=90°,∴tanA=,∴AD=4,∴BD=AB﹣AD=12﹣4=1.在Rt△BCD中,∵∠BDC=90°,BD=1,CD=6,∴BC==10,∴sinB=,cosB=,∴sinB+cosB==.故答案为考点:解直角三角形;勾股定理.21、33.1米【分析】根据题意及解直角三角形的应用直接列式求解即可.【详解】解:过点D作DF⊥AB,如图所示:在Rt△ADF中,DF=BC=21米,∠ADF=45°∴AF=DF=21米在Rt△EDF中,DF=21米,∠EDF=30°∴EF=DF×tan30°=米∴AE=AF+BF=+21≈33.1米.答:条幅的长AE约是33.1米.本题主要考查解直角三角形的应用,关键是根据题意及利用三角函数求出线段的长.22、(1)10,10;(2)中位数和众数;(3)22000【分析】(1)根据众数、中位数和平均数的定义分别求解可得;
(2)由中位数和众数不受极端值影响可得答案;
(3)用总人数乘以样本中居民的平均使用次数即可得.【详解】解:(1)这10位居民一周内使用共享单车次数的中位数是:(次),根据使用次数可得:众数为10次;(2)把数据“20”看成了“30”,那么中位数,众数和平均数中不受影响的是中位数和众数,
故答案为:中位数和众数;(3)平均数为(次),(次)估计该小区居民一周内使用共享单车的总次数为22000次.本题考查的是平均数、众数、中位数的定义及其求法,牢记定义是关键.23、(1)211-21x;(2)12元.【解析】试题分析:(1)如果设每件商品提高x元,即可用x表示出每天的销售量;(2)根据总利润=单价利润×销售量列出关于x的方程,进而求出未知数的值.试题解析:解:(1)211-21x;(2)根据题意,得(11-8+x)(211-21x)=711,整理得x2-8x+12=1,解得x1=2,x2=3,因为要采取提高售价,减
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025内蒙古敖汉干部学院年度竞争性比选事业编制工作人员模拟试卷完整参考答案详解
- 2025广东广州高新技术产业开发区民营科技园管理委员会第一次招聘政府雇员1人模拟试卷及答案详解(网校专用)
- 2025广东湛江中心人民医院第二批招聘考前自测高频考点模拟试题及完整答案详解一套
- 2025年河北衡水冀州区公开招聘第二批社区工作者72名考前自测高频考点模拟试题附答案详解(考试直接用)
- 2025年合肥市骨科医院招聘41人模拟试卷附答案详解(黄金题型)
- 2025广东广州市公安局招聘辅警48人考前自测高频考点模拟试题及完整答案详解一套
- 2025福建厦门市集美区乐安小学非在编教师招聘1人模拟试卷及答案详解(有一套)
- 2025江苏常州经济开发区社会保障和卫生健康局下属事业单位招聘卫技人员35人模拟试卷及参考答案详解一套
- 2025江苏靖江市招聘教师45人模拟试卷及答案详解(必刷)
- 2025辽宁沈阳市城市建设投资集团有限公司所属企业沈阳新基发展有限公司招聘16人模拟试卷及答案详解(历年真题)
- GB/T 25195.2-2025起重机图形符号第2部分:流动式起重机
- 任务二鞋带自己系(教案)-浙教版劳动一年级上册
- DB13-T2674-2018-危险化学品企业应急救援人员培训及考核规范-河北省
- 工业互联网视角下的燃气企业数字化转型策略
- 大中型企业安全生产标准化管理体系要求
- 大学美育-美育赏湖南知到智慧树章节测试课后答案2024年秋湖南高速铁路职业技术学院
- 药品经营质量管理制度培训
- 动火作业施工方案5篇
- 浙教版九年级科学上册讲练测专题提升Ⅳ动态电路中电功电功率变化问题(原卷版+解析)
- 杭州师范大学2013年841无机化学考研真题
- 美学原理全套教学课件
评论
0/150
提交评论