




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省临沂商城外国语学校2026届数学八年级第一学期期末考试试题期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.若是一个完全平方式,则的值应是()A.2 B.-2 C.4或-4 D.2或-22.二班学生某次测试成绩统计如下表:则得分的众数和中位数分别是()得分(分)60708090100人数(人)7121083A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分3.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE
③DE=BE
④AD=AB+CD,四个结论中成立的是()A. B. C. D.4.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米,数据0.000000007用科学记数法表示为()A.0.7×10-8 B.7×10-8 C.7×10-9 D.7×10-105.已知一次函数图象上的三点,,,则,,的大小关系是()A. B. C. D.6.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲乙丙丁平均数(分)92959592方差3.63.67.48.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲 B.乙 C.丙 D.丁7.某工厂计划x天内生产120件零件,由于采用新技术,每天增加生产3件,因此提前2天完成计划,列方程为()A. B.C. D.8.如图,在数轴上表示实数的点可能是().A.点 B.点 C.点 D.点9.关于x的方程无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.510.如图,是一高为2m,宽为1.5m的门框,李师傳有3块薄木板,尺寸如下:①号木板长3m,宽2.7m;②号木板长2.8m,宽2.8m;③号木板长4m,宽2.4m.可以从这扇门通过的木板是()A.①号 B.②号 C.③号 D.均不能通过11.若使分式有意义,则的取值范围是()A. B. C. D.12.如图,直线l1、l2的交点坐标可以看作方程组()的解.A. B.C. D.二、填空题(每题4分,共24分)13.函数中,自变量x的取值范围是.14.如果关于的不等式只有4个整数解,那么的取值范围是________________________。15.如图,在△ABC中,∠A=40°,点D是∠ABC和∠ACB角平分线的交点,则∠BDC为________16.一个三角形的两边的长分别是3和5,要使这个三角形为直角三角形,则第三条边的长为_____.17.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是_______.18.如图,长方形中,,,点在边上,且,点是边上一点,连接,将四边形沿折叠,若点的对称点恰好落在边上,则的长为____.三、解答题(共78分)19.(8分)如图,直线分别与轴,轴交于点,,过点的直线交轴于点.为的中点,为射线上一动点,连结,,过作于点.(1)直接写出点,的坐标:(______,______),(______,______);(2)当为中点时,求的长;(3)当是以为腰的等腰三角形时,求点坐标;(4)当点在线段(不与,重合)上运动时,作关于的对称点,若落在轴上,则的长为_______.20.(8分)如图,在平面直角坐标系中,,,(1)画出关于轴的对称图形,并写出点、的坐标(2)直接写出的面积(3)在轴负半轴上求一点,使得的面积等于的面积21.(8分)在△ABC中,BC=AC,∠C=90°,直角顶点C在x轴上,一锐角顶点B在y轴上.(1)如图①若AD于垂直x轴,垂足为点D.点C坐标是(-1,0),点A的坐标是(-3,1),求点B的坐标.(2)如图②,直角边BC在两坐标轴上滑动,若y轴恰好平分∠ABC,AC与y轴交于点D,过点A作AE⊥y轴于E,请猜想BD与AE有怎样的数量关系,并证明你的猜想.(3)如图③,直角边BC在两坐标轴上滑动,使点A在第四象限内,过A点作AF⊥y轴于F,在滑动的过程中,请猜想OC,AF,OB之间有怎样的关系?并证明你的猜想.22.(10分)某体育用品商店一共购进20个篮球和排球,进价和售价如下表所示,全部销售完后共获得利润260元;篮球排球进价(元/个)8050售价(元/个)9560(1)列方程组求解:商店购进篮球和排球各多少个?(2)销售6个排球的利润与销售几个篮球的利润相等?23.(10分)如果三角形有一边上的中线恰好等于这边的长,那么我们称这个三角形为“美丽三角形”,(1)如图△ABC中,AB=AC=,BC=2,求证:△ABC是“美丽三角形”;(2)在Rt△ABC中,∠C=90°,AC=2,若△ABC是“美丽三角形”,求BC的长.24.(10分)如图,在锐角三角形ABC中,AB=13,AC=15,点D是BC边上一点,BD=5,AD=12,求BC的长度.25.(12分)(1)因式分解:﹣x1+x﹣;(1)解分式方程:=1.26.某建筑公司中标了从县城到某乡镇的一段公路的路基工程,此公司有两个工程队,做进度计划时计算得出,如由甲工程队单独施工可按时完工,由乙工程队单独施工要延迟20天完工.最后公司安排甲乙两个工程队一起先共同施工15天,剩下的工程由乙工程队单独施工,刚好按时完工,求此工程的工期.
参考答案一、选择题(每题4分,共48分)1、C【解析】这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去x和2的积的2倍,故-m=±1,m=±1.【详解】∵(x±2)2=x2±1x+1=x2-mx+1,∴m=±1.故选:C.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.2、C【解析】根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,则中间的数(或中间两个数据的平均数)就是这组数据的中位数解答即可.【详解】解:由于总人数为7+12+10+8+3=40人,所以中位数为第20、21个数据平均数,即中位数为=80(分),因为70分出现次数最多,所以众数为70分,故选C.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3、A【分析】过E作EF⊥AD于F,易证得Rt△AEF≌Rt△AEB,得到BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,得到EC=EF=BE,则可证得Rt△EFD≌Rt△ECD,得到DC=DF,∠FDE=∠CDE,也可得到AD=AF+FD=AB+DC,∠AED=∠AEF+∠FED=∠BEC=90°,即可判断出正确的结论.【详解】过E作EF⊥AD于F,如图,∵AB⊥BC,AE平分∠BAD,∴Rt△AEF≌Rt△AEB,∴BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,∴EC=EF=BE,所以③错误;∴Rt△EFD≌Rt△ECD,∴DC=DF,∠FDE=∠CDE,所以②正确;∴AD=AF+FD=AB+DC,所以④正确;∴∠AED=∠AEF+∠FED=∠BEC=90°,所以①正确.故选A.【点睛】本题考查了角平分线的性质:角平分线上的点到角的两边的距离相等.也考查了三角形全等的判定与性质.4、C【分析】绝对值小于1的数也可以用科学计数法表示,一般形式为a×10-n,其中1≤|a|<10,与较大数的科学计数法不同的是其使用的是负指数幂,n由原数左边起第一个不为零的数字前面的0的个数决定.【详解】0.000000007=7×10-9,故选:C.【点睛】题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n由原数左边起第一个不为零的数字前面的0的个数决定.5、A【分析】利用一次函数的增减性即可得.【详解】一次函数中的则一次函数的增减性为:y随x的增大而减小故选:A.【点睛】本题考查了一次函数的图象特征,掌握并灵活运用函数的增减性是解题关键.6、B【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,选出方差最小,而且平均数较大的同学参加数学比赛.【详解】解:∵3.6<7.4<8.1,
∴甲和乙的最近几次数学考试成绩的方差最小,发挥稳定,
∵95>92,
∴乙同学最近几次数学考试成绩的平均数高,
∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择乙.
故选B.【点睛】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.7、D【分析】关键描述语为:“每天增加生产1件”;等量关系为:原计划的工效=实际的工效−1.【详解】原计划每天能生产零件件,采用新技术后提前两天即(x﹣2)天完成,所以每天能生产件,根据相等关系可列出方程.故选:D.【点睛】本题考查了分式方程的实际应用,找到关键描述语,找到合适的等量关系是解决问题的关键.8、B【分析】先确定
是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【详解】解:∵∴∴表示实数的点可能是E,故选:B.【点睛】本题考查实数与数轴上的点的对应关系,正确判断无理数在哪两个相邻的整数之间是解题的关键.9、A【解析】解:去分母得:3x﹣2=2x+2+m①.由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程①得:﹣1=﹣2+2+m,解得:m=﹣1.故选A.10、C【分析】根据勾股定理,先计算出能通过的最大距离,然后和题中数据相比较即可.【详解】解:如图,由勾股定理可得:所以此门通过的木板最长为,所以木板的长和宽中必须有一个数据小于2.5米.所以选③号木板.故选C.【点睛】本题考查的是勾股定理的实际应用,掌握勾股定理的应用,理解题意是解题的关键.11、B【解析】根据分式有意义的条件是分母不等于零求解.【详解】解:由题意得,,解得,,故选:B.【点睛】本题主要考查的是分式有意义的条件,熟练掌握分式有意义的条件是解题的关键.12、A【分析】首先利用待定系数法求出l1、l2的解析式,然后可得方程组.【详解】解:设l1的解析式为y=kx+b,∵图象经过的点(1,0),(0,-2),∴,解得:,∴l1的解析式为y=2x-2,可变形为2x-y=2,设l2的解析式为y=mx+n,∵图象经过的点(-2,0),(0,1),∴,解得:,∴l2的解析式为y=x+1,可变形为x-2y=-2,∴直线l1、l2的交点坐标可以看作方程组的解.故选:A.【点睛】此题主要考查了一次函数与二元一次方程组的解,关键是掌握两函数图象的交点就是两函数解析式组成的方程组的解.二、填空题(每题4分,共24分)13、.【解析】∵在实数范围内有意义,∴∴故答案为14、−5<a⩽−.【解析】首先利用不等式的基本性质解不等式组,再从不等式的解集中找出适合条件的整数解,在确定字母的取值范围即可.【详解】,由①得:x<21,由②得:x>2−3a,不等式组的解集为:2−3a<x<21∵不等式组只有4个整数解为20、19、18、17∴16⩽2−3a<17∴−5<a⩽−.故答案为:−5<a⩽−.【点睛】此题考查一元一次不等式组的整数解,解题关键在于掌握不等式组的运算法则.15、110°【分析】由D点是∠ABC和∠ACB角平分线的交点可推出∠DBC+∠DCB=70°,再利用三角形内角和定理即可求出∠BDC的度数.【详解】解:∵D点是∠ABC和∠ACB角平分线的交点,
∴∠CBD=∠ABD=∠ABC,∠BCD=∠ACD=∠ACB,∵∠A=40°,
∴∠ABC+∠ACB=180°−40°=140°,
∴∠DBC+∠DCB=70°,
∴∠BDC=180°−70°=110°,
故答案为:110°.【点睛】此题主要考查学生对角平分线性质,三角形内角和定理,熟记三角形内角和定理是解决问题的关键.16、4或【详解】解:①当第三边是斜边时,第三边的长的平方是:32+52=34;②当第三边是直角边时,第三边长的平方是:52-32=25-9=16=42,故答案是:4或.17、【分析】方法一:利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解;方法二:根据方程组的特点可得方程组的解是,再利用加减消元法即可求出a,b.【详解】详解:∵关于x、y的二元一次方程组的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组整理为:解得:方法二:∵关于x、y的二元一次方程组的解是∴方程组的解是解得故答案为:.【点睛】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.18、1.【分析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD,A′E=AE,可证明Rt△A′CD≌Rt△DBA,根据全等三角形的性质得到A′C=BD=2,A′O=4,然后在Rt△A′OE中根据勾股定理列出方程求解即可.【详解】解:如图,
∵四边形OABC是矩形,
∴BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,
∵CD=1DB,
∴CD=6,BD=2,
∴CD=AB,
∵将四边形ABDE沿DE折叠,若点A的对称点A′恰好落在边OC上,
∴A′D=AD,A′E=AE,
在Rt△A′CD与Rt△DBA中,,∴Rt△A′CD≌Rt△DBA(HL),
∴A′C=BD=2,
∴A′O=4,
∵A′O2+OE2=A′E2,
∴42+OE2=(8-OE)2,
∴OE=1,
故答案是:1.【点睛】本题考查了轴对称变换(折叠问题),矩形的性质,全等三角形的判定和性质,掌握相关性质是解题的关键.三、解答题(共78分)19、(1)-2,0;2,0;(2);(3)当或时,是以为腰的等腰三角形;(4).【分析】(1)先根据求出A,B的坐标,再把B点坐标代入求出b值,即可求解C点坐标,再根据为的中点求出D点坐标;(2)先求出P点坐标得到,再根据即可求解;(3)根据题意分①②,即可列方程求解;(4)根据题意作图,可得对称点即为A点,故AD=PD=4,设,作PF⊥AC于F点,得DF=2-x,PF=-x+4,利用Rt△PFD列方程解出x,得到P点坐标,再根据坐标间的距离公式即可求解.【详解】(1)由直线AB的解析式为,令y=0,得x=-2,∴,令x=0,得y=4,∴B(0,4)把B(0,4)代入,求得b=4,∴直线BC的解析式为令y=0,得x=4,∴∵为的中点∴故答案为:-2,0;2,0;(2)由(1)得B(0,4),当为的中点时,则,∵为的中点,∴轴,,,∴∵,∴(3)∵点是射线上一动点,设,当是以为腰的等腰三角形时,①若,,解得:,(舍去),此时;②若,,解得:,此时.综上,当或时,是以为腰的等腰三角形.(4)∵关于的对称点,若落在轴上∴点为A点,∴AD=PD=4,设,作PF⊥AC于F点,∴DF=2-x,PF=-x+4,在Rt△PFD中,DF2+PF2=DP2即(2-x)2+(-x+4)2=42解得x=3-(3+舍去)∴P(3-,+1),∴==故答案为:.【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知一次函数的图像与性质、等腰三角形及直角三角形的性质.20、(1)画图见解析,、;(2)5;(3)【分析】(1)根据关于x轴对称的点的坐标特点,横坐标不变,纵坐标互为相反数,画图求解;(2)利用割补法求三角形面积;(3)设,采用割补法求△ABP面积,从而求解.【详解】解:(1)如图:、(2)∴的面积为5(3)设,建立如图△PMB,连接AM有图可得:∴解得:∴【点睛】本题考查画轴对称图形,三角形的面积计算,利用数形结合思想采用割补法解题是关键.21、(1)点B的坐标是(0,2);(2)BD=2AE,证明见解析;(3)OC=OB+AF,证明见解析.【分析】(1)先证△ADC≌△COB,得出OB=CD,从而得出点B的坐标;(2)如下图,可证明△BDC≌△AFC,BD=AE,然后根据BE⊥AE,y轴恰好平分∠ABC,可推导得出结论;(3)如下图,根据矩形的性质和等腰直角三角形的性质,可证△BOC≌△CEO,从而得出结论.【详解】(1)∵点C坐标是(-1,0),点A的坐标是(-3,1)∴AD=OC,在Rt△ADC和Rt△COB中AD=OC,AC=BC∴Rt△ADC≌Rt△COB(HL),∴OB=CD=2,∴点B的坐标是(0,2);(2)BD=2AE,理由:作AE的延长线交BC的延长线于点F,如下图2所示,∵△ABC是等腰直角三角形,BC=AC,直角顶点C在x轴上,AE⊥y轴于E,∴∠BCA=∠ACF=90°,∠AED=90°,∴∠DBC+∠BDC=90°,∠DAE+∠ADE=90°,∵∠BDC=∠ADE,∴∠DBC=∠FAC,在△BDC和△AFC中,∴△BDC≌△AFC(ASA)∴BD=AF,∵BE⊥AE,y轴恰好平分∠ABC,∴AF=2AE,∴BD=2AE;(3)OC=OB+AF,证明:作AE⊥OC于点E,如下图3所示,∵AE⊥OC,AF⊥y轴,∴四边形OFAE是矩形,∠AEC=90°,∴AF=OE,∵△ABC是等腰直角三角形,BC=AC,直角顶点C在x轴上,∠BOC=90°,∴∠BCA=90°,∴∠BCO+∠CBO=90°,∠BCO+∠ACE=90°,∴∠CBO=∠ACE,在△BOC和△CEO中,∴△BOC≌△CEO(AAS)∴OB=CE,∵OC=OE+EC,OE=AF,OB=EC,∴OC=OB+AF.【点睛】本题考查三角形全等的综合,解题关键是通过辅助线,构造出全等三角形,然后利用全等三角形的性质转化求解.22、(1)购进篮球12个,购进排球8个;(2)销售6个排球的利润与销售4个篮球的利润相等.【分析】(1)设购进篮球x个,购进排球y个,根据一共购进20个篮球和排球,共获得利润260元列方程组,解方程组求出x、y的值即可得答案;(2)先求出6个排球的利润,再根据每个篮球的利润即可得答案.【详解】(1)设购进篮球x个,购进排球y个,由表格可得,销售一个篮球利润为15元,销售一个排球利润为10元,∵一共购进20个篮球和排球,共获得利润260元,∴,解得:.答:购进篮球12个,购进排球8个.(2)由表格可得,销售一个篮球利润为15元,销售一个排球利润为10元,∴销售6个排球的利润为:6×10=60元,∴60÷15=4(个),答:销售6个排球的利润与销售4个篮球的利润相等.【点睛】本题考查二元一次方程组得应用,正确得出题中的等量关系是解题关键.23、(1)见解析;(2)BC=3或BC=4.【分析】(1)由“美丽三角形”的定义知,要求出△ABC的中线长,再作比较,由AB=AC=,可知△ABC是等腰三角形,由“三线合一”,可作BC的中线AD,则AD即为BC的高线,由勾股定理求AD的长即可证明;(2)Rt△ABC中有三条中线,由斜边上的中线是斜边的一半,排除斜边的中线;则有两种
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 涂层后处理工安全生产月专项考核试卷及答案
- 风电机组机械装调工会议决议执行考核试卷及答案
- 买姜井协议书
- 纳卡停火协议书
- 防渗墙工岗位标准化技术规程
- 公司验房师应急处置技术规程
- 2025租赁合同简化版范本
- 2026届河北省秦皇岛市抚宁区台营区数学七上期末检测模拟试题含解析
- 2025船舶租赁合同范文
- 2025合同模板股权转让合同(公司扩张使用详细条款)范本
- 2025河南省文化旅游投资集团有限公司权属企业社会招聘52人笔试备考题库及答案解析
- 2025年河北水利发展集团有限公司公开招聘工作人员41名笔试参考题库附带答案详解
- 胰岛素泵护理查房
- 2025年资格考试-WSET二级认证历年参考题库含答案解析(5套典型题)
- 安徽省皖豫名校联盟2024-2025学年高三上学期10月月考历史试题
- (新教材)2025年秋期人教版一年级上册数学全册核心素养教案(教学反思无内容+二次备课版)
- 2024-2025学年浙江省宁波市金兰教育合作组织高一下学期期中联考历史试题(解析版)
- 临汾市尧都区招聘专职社区工作者笔试真题2023
- (正式版)SH∕T 3548-2024 石油化工涂料防腐蚀工程施工及验收规范
- 《药物化学》课件-苯二氮䓬类药物
- 城市轨道交通员工职业素养(高职)全套教学课件
评论
0/150
提交评论