版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都市新都区2026届数学八年级第一学期期末教学质量检测试题检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图所示,有一个长、宽各2米,高为3米且封闭的长方体纸盒,一只昆虫从顶点A要爬到顶点B,那么这只昆虫爬行的最短路程为()A.3米 B.4米 C.5米 D.6米2.下列图形中,是轴对称图形的是()A. B. C. D.3.如图所示的正方形网格中,网格线的交点称为格点.已知、是两格点,如果也是图中的格点,且使得为等腰三角形,则点的个数是()A.5 B.6 C.7 D.84.若解关于的方程时产生增根,那么的值为()A.1 B.2 C.0 D.-15.如图,在中,是的平分线,且,若,则的大小为()A. B. C. D.6.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是()A.SSS B.ASA C.AAS D.SAS7.下列长度的三条线段,能组成三角形的是()A.3、1、4 B.3、5、9 C.5、6、7 D.3、6、108.在实数,,,中,无理数是()A. B. C. D.9.下列各式由左边到右边的变形中,是分解因式的是A. B.C. D.10.4的平方根是()A.4 B. C. D.211.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2 B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2 D.a2﹣b2=(a+b)(a﹣b)12.下面的图形中,是轴对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边长分别为6m和8m,斜边长为10m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是_____.14.现有两根长为4cm,9cm的小木棒,打算拼一个等腰三角形,则应取的第三根小木棒的长是_____cm.15._______.16.若a﹣b+6的算术平方根是2,2a+b﹣1的平方根是±4,则a﹣5b+3的立方根是_____.17.如图,中,是上一点,,,则____.18.如图,在△ABC中,∠A=50°,O是△ABC内一点,且∠ABO=20°,∠ACO=30°.∠BOC的度数是_________.
三、解答题(共78分)19.(8分)某数学兴趣小组开展了一次活动,过程如下:设.现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线、上.活动一、如图甲所示,从点开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直(为第1根小棒)数学思考:(1)小棒能无限摆下去吗?答:(填“能”或“不能”)(2)设,求的度数;活动二:如图乙所示,从点开始,用等长的小棒依次向右摆放,其中为第一根小棒,且.数学思考:(3)若已经摆放了3根小棒,则,,;(用含的式子表示)(4)若只能摆放5根小棒,则的取值范围是.20.(8分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,(1)尺规作图:作△ABC的角平分线AE,交CD于点F(不写作法,保留作图痕迹);(2)求证:△CEF为等腰三角形.21.(8分)计算:(1)(2).22.(10分)如图1,直线AB交x轴于点A(4,0),交y轴于点B(0,-4),(1)如图,若C的坐标为(-1,,0),且AH⊥BC于点H,AH交OB于点P,试求点P的坐标;(2)在(1)的条件下,如图2,连接OH,求证:∠OHP=45°;(3)如图3,若点D为AB的中点,点M为y轴正半轴上一动点,连结MD,过点D作DN⊥DM交x轴于N点,当M点在y轴正半轴上运动的过程中,式子的值是否发生改变?如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.23.(10分)如图,,求的长,24.(10分)“构造图形解题”,它的应用十分广泛,特别是有些技巧性很强的题目,如果不能发现题目中所隐含的几何意义,而用通常的代数方法去思考,经常让我们手足无措,难以下手,这时,如果能转换思维,发现题目中隐含的几何条件,通过构造适合的几何图形,将会得到事半功倍的效果,下面介绍两则实例:实例一:1876年,美国总统伽非尔德利用实例一图证明了勾股定理:由S四边形ABCD=S△ABC+S△ADE+S△ABE得,化简得:实例二:欧几里得的《几何原本》记载,关于x的方程的图解法是:画Rt△ABC,使∠ABC=90°,BC=,AC=,再在斜边AB上截取BD=,则AD的长就是该方程的一个正根(如实例二图)请根据以上阅读材料回答下面的问题:(1)如图1,请利用图形中面积的等量关系,写出甲图要证明的数学公式是,乙图要证明的数学公式是(2)如图2,若2和-8是关于x的方程x2+6x=16的两个根,按照实例二的方式构造Rt△ABC,连接CD,求CD的长;(3)若x,y,z都为正数,且x2+y2=z2,请用构造图形的方法求的最大值.25.(12分)已知,,求下列代数式的值.(1)(2)26.如图,在Rt△ABC中,(M2,N2),∠BAC=30°,E为AB边的中点,以BE为边作等边△BDE,连接AD,CD.(1)求证:△ADE≌△CDB;(2)若BC=,在AC边上找一点H,使得BH+EH最小,并求出这个最小值.
参考答案一、选择题(每题4分,共48分)1、C【解析】解:由题意得,路径一:;路径二:;路径三:为最短路径,故选C.2、B【分析】根据轴对称图形的定义判断即可.【详解】A是中心对称图形,B是轴对称图形,C是中心对称图形,D即不是中心对称图形也不是轴对称图形.故选B.【点睛】本题考查对称轴图形的判断,关键在于牢记对称轴图形的定义.3、D【分析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.【详解】解:如图,分情况讨论:
①AB为等腰△ABC的底边时,符合条件的C点有4个;
②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.
故选:D.【点睛】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形.分类讨论思想是数学解题中很重要的解题思想.4、A【分析】关于的方程有增根,那么最简公分母为0,所以增根是x=2,把增根x=2代入化为整式方程的方程即可求出未知字母的值.【详解】将原方程两边都乘(x-2)得:,整理得,∵方程有增根,∴最简公分母为0,即增根是x=2;把x=2代入整式方程,得m=1.故答案为:A.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:根据最简公分母确定增根的值;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.5、B【分析】在AB上截取AC′=AC,连接DC′,由题知AB=AC+CD,得到DC=C′B,可证得△ADC≌△ADC′,即可得到△BDC′是等腰三角形,设∠B=x,利用三角形的内角和公式即可求解.【详解】解:在AB上截取AC′=AC,连接DC′如图所示:∵AB=AC+CD∴BC′=DC∵AD是∠BAC的角平分线∴∠C′AD=∠DAC在△ACD和△AC′D中∴△ACD≌△AC′D∴C′D=DC,∠ACD=∠AC′D∴DC′=BC′∴△BC′D是等腰三角形∴∠C′BD=∠C′DB设∠C′BD=∠C′DB=x,则∠ACD=∠AC′D=2x∵∠BAC=81°∴x+2x+81°=180°解得:x=33°∴∠ACB=33°×2=66°故选:B.【点睛】本题主要考查的是全等三角形的判定以及角平分线的性质,掌握全等三角形的判定和角平分线的性质是解题的关键.6、A【分析】连接NC,MC,根据SSS证△ONC≌△OMC,即可推出答案.【详解】解:连接NC,MC,在△ONC和△OMC中,,∴△ONC≌△OMC(SSS),∴∠AOC=∠BOC,故选A.【点睛】本题考查了全等三角形的性质和判定的应用,主要考查学生运用性质进行推理的能力,题型较好,难度适中.7、C【分析】根据三角形的三边关系进行分析判断.【详解】A、1+3=4,不能组成三角形;
B、3+5=8<9,不能组成三角形;
C、5+6=11>7,能够组成三角形;
D、3+6=9<10,不能组成三角形.
故选:C.【点睛】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.8、D【分析】无理数就是无限不循环小数,利用无理数的定义即可判定选择项.【详解】解:在实数,,,中,=2,=-3,π是无理数.故选D.【点睛】此题主要考查了无理数的定义.初中范围内学习的无理数有三类:①π类,②开方开不尽的数,③虽有规律但是无限不循环的数.9、C【解析】根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.【详解】解:A、是多项式乘法,不是分解因式,故本选项错误;
B、是提公因式法,不是分解因式,故本选项错误;
C、右边是积的形式,故本选项正确.D、没有把一个多项式化为几个整式的积的形式,错误.
故选:C.【点睛】此题考查了因式分解的意义;这类问题的关键在于能否正确应用分解因式的定义来判断.10、C【分析】根据平方根的性质,正数有两个平方根且互为相反数,开方求解即可.【详解】∵一个正数有两个平方根且互为相反数∴4的平方根是故选:C.【点睛】本题主要考查平方根的性质,熟知一个正数有两个平方根并互为相反数是解题的关键,区分平方根与算术平方根是易错点.11、D【分析】根据面积相等,列出关系式即可.【详解】解:由题意得这两个图形的面积相等,∴a2﹣b2=(a+b)(a-b).故选D.【点睛】本题主要考查对平方差公式的知识点的理解和掌握.掌握平方差公式的结构特征是解题的关键.12、C【分析】沿着一条直线对折,两边能够完全重合的图形就是轴对称图形,根据定义判断即可.【详解】A选项图形不是轴对称图形,不符合题意;B选项图形不是轴对称图形,不符合题意;C选项图形是轴对称图形,符合题意;D选项图形不是轴对称图形,不符合题意;故选C.【点睛】本题考查轴对称图形的判断,熟记轴对称图形的定义是解题的关键.二、填空题(每题4分,共24分)13、6m【分析】根据三角形的面积公式,RT△ABC的面积等于△AOB、△AOC、△BOC三个三角形面积的和列式求出点O到三边的距离,然后乘以3即可.【详解】设点O到三边的距离为h,
则,
解得h=2m,
∴O到三条支路的管道总长为:3×2=6m.
故答案为:6m.【点睛】本题考查了角平分线上的点到两边的距离相等的性质,以及勾股定理,三角形的面积的不同表示,根据三角形的面积列式求出点O到三边的距离是解题的关键.14、1【分析】题目给出两条小棒长为4cm和1cm打算拼一个等腰三角形,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:当第三根是4cm时,其三边分别为4cm,4cm,1cm,不符合三角形三边关系,故舍去;当第三根是1cm时,其三边分别是1cm,1cm,4cm,符合三角形三边关系;∴第三根长1cm.故答案为:1.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.15、1【分析】根据负整数指数幂,零指数幂,整数指数幂的运算法则计算即可.【详解】原式=+1-=1,故答案为:1.【点睛】本题考查了实数的运算,掌握负整数指数幂,零指数幂,整数指数幂的运算法则是解题关键.16、-1【分析】运用立方根和平方根和算术平方根的定义求解【详解】解:∵a﹣b+6的算术平方根是2,2a+b﹣1的平方根是±4,∴a﹣b+6=4,2a+b﹣1=16,解得a=5,b=7,∴a﹣5b+1=5﹣15+1=﹣27,∴a﹣5b+1的立方根﹣1.故答案为:﹣1【点睛】本题考查了立方根和平方根和算术平方根,解题的关键是按照定义进行计算.17、40°【分析】设x,根据等腰三角形的性质,三角形的内角和定理得∠DAC=180°-2x,由三角形外角的性质得∠BAD=,结合条件,列出方程,即可求解.【详解】设x,∵,∴∠C=x,∠BAD=∠DBA=,∴∠DAC=180°-2x,∵,∴180°-2x+=120°,解得:x=40°,故答案是:40°.【点睛】本题主要考查等腰三角形的性质,三角形的内角和定理以及三角形外角的性质定理,掌握上述定理,列出方程,是解题的关键.18、100°【分析】延长BO交AC于E,根据三角形内角与外角的性质可得∠1=∠A+∠ABO,∠BOC=∠ACO+∠1,再代入相应数值进行计算即可.【详解】解:延长BO交AC于E,∵∠A=50°,∠ABO=20°,
∴∠1=∠A+∠ABO=50°+20°=70°,
∵∠ACO=30°,
∴∠BOC=∠1+∠ACO=70°+30°=100°故答案为:100°【点睛】此题主要考查了三角形内角与外角的关系,关键是掌握三角形内角与外角的关系定理.三、解答题(共78分)19、(1)能;(2)θ=22.5°;(3)2θ,3θ,4θ;(4)15°≤θ<18°.【分析】(1)由小棒与小棒在端点处互相垂直,即可得到答案;(2)根据等腰直角三角形的性质和三角形外角的性质,即可得到答案;(3)由,得∠AA2A1=∠A2AA1=θ,从而得∠AA2A1+∠A2AA1=2θ,同理得∠A2AA1+=θ+2θ=3θ,∠A2AA1+θ+3θ=4θ;(4)根据题意得:5θ<90°且6θ≥90°,进而即可得到答案.【详解】(1)∵小棒与小棒在端点处互相垂直即可,∴小棒能无限摆下去,故答案是:能;(2)∵A1A2=A2A3,A1A2⊥A2A3,∴∠A2A1A3=45°,∴∠AA2A1+θ=45°,∵AA1=A1A2∴∠AA2A1=∠BAC=θ,∴θ=22.5°;(3)∵,∴∠AA2A1=∠A2AA1=θ,∴∠AA2A1+∠A2AA1=2θ,∵,∴=2θ,∴∠A2AA1+=θ+2θ=3θ,∵,∴3θ,∴∠A2AA1+θ+3θ=4θ,故答案是:2θ,3θ,4θ;(4)由第(3)题可得:5θ,6θ,∵只能摆放5根小棒,∴5θ<90°且6θ≥90°,∴15°≤θ<18°.故答案是:15°≤θ<18°.【点睛】本题主要考查等腰三角形的性质以及三角形外角的性质,掌握等腰三角形的底角相等且小于90°,是解题的关键.20、(1)详见解析;(2)详见解析.【分析】(1)以A为圆心,任意长为半径画弧交AC、AB于M、N,分别以M、N为圆心大于MN长为半径画弧,两弧交于点P,直线射线AP交BC于E,线段AE即为所求;4(2)只要证明∠CEF=∠CFE,即可推出CE=CF;【详解】(1)如图线段AE即为所求;(2)证明:∵CD⊥AB,∴∠BDC=∠ACB=90°,∴∠ACD+∠DCB=90°,∠DCB+∠B=90°,∴∠ACD=∠B,∵∠CFE=∠ACF+∠CAF,∠CEF=∠B+∠EAB,∠CAF=∠EAB,∴∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.【点睛】本题考查作图-基本作图,等腰三角形的判定等知识,解题的关键是熟练掌握五种基本作图,灵活运用所学知识解决问题.21、(1)(2).【分析】(1)根据整式的乘除运算法则进行求解;(2)根据乘方公式进行化简求解.【详解】(1)==(2).===.【点睛】此题主要考查整式的乘除,解题的关键是熟知整式的乘除运算法则.22、(1)P(0,1);(2)证明见解析;(3)不变;1.【分析】(1)利用坐标的特点,得出△OAP≌△OB,得出OP=OC=1,得出结论;
(2)过O分别做OM⊥CB于M点,ON⊥HA于N点,证出△COM≌△PON,得出OM=ON,HO平分∠CHA,求得结论;
(3)连接OD,则OD⊥AB,证得△ODM≌△ADN,利用三角形的面积进一步解决问题.试题解析:(1)由题得,OA=OB=1.【详解】解:∵AH⊥BC于H,∴∠OAP+∠OPA=∠BPH+∠OBC=90°,∴∠OAP=∠OBC在△OAP和△OBC中,∴△OAP≌△OBC(ASA),∴OP=OC=1,则点P(0,1)(2)过点O分别作OM⊥CB于M点,ON⊥HA于N点,在四边形OMHN中,∠MON=360°-3×90°=90°,∴∠COM=∠PON=90°-∠MOP在△COM和△PON中,,∴△COM≌△PON(AAS),∴OM=ON,∵HO平分∠CHA,∴;(3)的值不发生改变,理由如下:连结OD,则OD⊥AB,∠BOD=∠AOD=15°,∠OAD=15°,∴OD=AD,∴∠MDO=∠NDA=90°-∠MDA,在△ODM和△AND中,,∴△ODM≌△AND(ASA),∴∴,∴.23、1.【分析】先由全等三角形的性质得到AF=AE=4,继而根据DF=AD-AF进行求解即可.【详解】∵△ACF≌△ADE,∴AF=AE,∵AE=5,∴AF=5,∵DF=AD-AF,AD=12,∴DF=12-5=1.【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的对应边相等是解题的关键.24、(1)完全平方公式;平方差公式;(2);(3)【分析】(1)利用面积法解决问题即可;(2)如图2,作于点H,由题意可得出,利用面积求出的长,再利用勾股定理求解即可;(3)如图3,用4个全等的直角三角形(两直角边分别为x,y,斜边为z),拼如图正方形,当时定值,z最小时,的值最大值.易知,当小正方形的顶点是大正方形的中点时,z的值最小,此时,,据此求解即可.【详解】解:(1)图1中甲图大正方形的面积乙图中大正方形的面积即∴甲图要证明的数学公式是完全平方公式,乙图要证明的公式是平方差公式;故答案为:完全平方公式;平方差公式;(2)如图2,作于点H,根据题意可知,根据三角形的面积可得:解得:根据勾股定理可得:根据勾股定理可得:;(3)如图3,用4个全等的直角三角形(两直角边分别
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026国家管网集团北方管道公司秋季招聘考试参考试题(浓缩500题)附参考答案详解(能力提升)
- 2026国家管网集团北方管道公司秋季高校毕业生招聘考试备考试题(浓缩500题)附答案详解(综合卷)
- 2025国网青海省电力校园招聘(提前批)笔试模拟试题浓缩500题含答案详解(完整版)
- 2025国网江苏省电力校园招聘(提前批)笔试模拟试题浓缩500题(含答案详解)
- 2026国网海南省高校毕业生提前批招聘(约450人)笔试模拟试题浓缩500题含答案详解(综合题)
- 2026国网贵州省电力公司高校毕业生提前批招聘笔试参考题库浓缩500题含答案详解(巩固)
- 2026秋季国家管网集团工程技术创新公司(国家管网集团造价管理中心)高校毕业生招聘考试备考试题(浓缩500题)带答案详解(考试直接用)
- 国家管网集团2026届高校毕业生招聘考试备考题库(浓缩500题)带答案详解(巩固)
- 2026国网云南省电力公司高校毕业生提前批招聘笔试参考题库浓缩500题附答案详解(典型题)
- 2025国网江苏省高校毕业生提前批招聘(约450人)笔试模拟试题浓缩500题及答案详解(夺冠系列)
- 第4课京剧唱腔联奏(课件)人音版音乐六年级上册
- 人行道栏杆计算
- 临床各类引流管的固定及规范管理
- ISO9001 2015版质量管理体系标准
- 【面部除皱术】SMAS技术和FAME除皱术
- 制造业信息化现状与未来
- GB/T 35370-2017潜水呼吸器检测方法
- 公共艺术设计-课件
- 保安员知识培训课件
- 广电全媒体运营知识考试题库(含答案)
- 【语法】一般过去时态-完整版课件
评论
0/150
提交评论