版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省邵阳市崀山培英学校2025-2026学年数学高二上期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线,,点在抛物线上,记点到直线的距离为,则的最小值是()A.5 B.6C.7 D.82.已知线段AB的端点B在直线l:y=-x+5上,端点A在圆C1:上运动,线段AB的中点M的轨迹为曲线C2,若曲线C2与圆C1有两个公共点,则点B的横坐标的取值范围是()A.(-1,0) B.(1,4)C.(0,6) D.(-1,5)3.数列满足,,,则数列的前10项和为()A.60 B.61C.62 D.634.函数y=的最大值为Ae-1 B.eC.e2 D.5.已知,则在方向上的投影为()A. B.C. D.6.下列说法中正确的是()A.存在只有4个面的棱柱 B.棱柱的侧面都是四边形C.正三棱锥的所有棱长都相等 D.所有几何体的表面都能展开成平面图形7.已知集合,,则()A. B.C. D.8.已知双曲线上点到点的距离为15,则点到点的距离为()A.9 B.6C.6或36 D.9或219.“,”是“方程表示双曲线”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.已知抛物线的方程为,则此抛物线的准线方程为()A. B.C. D.11.将一枚骰子先后抛掷两次,若先后出现的点数分别记为a,b,则直线到原点的距离不超过1的概率是()A. B.C. D.12.已知数列满足,则()A. B.1C.2 D.4二、填空题:本题共4小题,每小题5分,共20分。13.已知,动点满足,则点的轨迹方程为___________.14.某射箭运动员在一次射箭训练中射靶10次,命中环数如下:8,9,8,10,6,7,9,10,8,5,则命中环数的平均数为___________.15.对于下面这个等式我们除了可以用等比数列的求和公式获得,还可以用数学归纳法对其进行证明“”,那么在应用数学归纳法证明时,当验证是否成立时,左边的式子应该是_______16.已知曲线与曲线有相同的切线,则________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线过点.(1)求抛物线方程;(2)若直线与抛物线交于两点两点在轴的两侧,且,求证:过定点.18.(12分)已知命题p:点在椭圆内;命题q:函数在R上单调递增(1)若p为真命题,求m的取值范围;(2)若为假命题,求实数m的取值范围19.(12分)已知的二项展开式中所有项的二项式系数之和为,(1)求的值;(2)求展开式的所有有理项(指数为整数),并指明是第几项20.(12分)甲、乙两人参加普法知识竞赛,共有5题,选择题(1)甲、乙两人中有一个抽到选择题(2)甲、乙两人中至少有一人抽到选择题21.(12分)已知是等差数列,其n前项和为,已知(1)求数列的通项公式:(2)设,求数列的前n项和22.(10分)如图,在多面体ABCEF中,和均为等边三角形,D是AC的中点,(1)证明:(2)若平面平面ACE,求二面角余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先求出抛物线的焦点和准线,利用抛物线的定义将转化为的距离,即可求解.【详解】由已知得抛物线的焦点为,准线方程为,设点到准线的距离为,则,则由抛物线的定义可知∵,当点、、三点共线时等号成立,∴,故选:.2、D【解析】设,AB的中点,由中点坐标公式求得,代入圆C1:得点点M的轨迹方程,再根据两圆的位置关系建立不等式,代入,求解即可得点B的横坐标的取值范围.【详解】解:设,AB的中点,则,所以,又因为端点A在圆C1:上运动,所以,即,因为曲线C2与圆C1有两个公共点,所以,又因B在直线l:y=-x+5上,所以,所以,整理得,即,解得,所以点B的横坐标的取值范围是,故选:D.3、B【解析】讨论奇偶性,应用等差、等比前n项和公式对作分组求和即可.【详解】当且为奇数时,,则,当且为偶数时,,则,∴.故选:B.4、A【解析】,所以函数在上递增,在上递减,所以函数的最大值为时,y==故选A点睛:研究函数最值主要根据导数研究函数的单调性,找到最值,分式求导公式要记熟5、C【解析】利用向量数量积的几何意义即得【详解】,故在方向上的投影为:故选:C6、B【解析】对于A、B:由棱柱的定义直接判断;对于C:由正三棱锥的侧棱长和底面边长不一定相等,即可判断;对于D:由球的表面不能展开成平面图形即可判断【详解】对于A:棱柱最少有5个面,则A错误;对于B:棱柱的所有侧面都是平行四边形,则B正确;对于C:正三棱锥的侧棱长和底面边长不一定相等,则C错误;对于D:球的表面不能展开成平面图形,则D错误故选:B7、A【解析】由已知得,因为,所以,故选A8、D【解析】利用双曲线的定义可得答案.【详解】设,,,为双曲线的焦点,则由双曲线定义,知,而所以或21故选:D.9、A【解析】根据双曲线的方程以及充分条件和必要条件的定义进行判断即可【详解】由,可知方程表示焦点在轴上的双曲线;反之,若表示双曲线,则,即,或,所以“,”是“方程表示双曲线”的充分不必要条件故选:A10、A【解析】由抛物线的方程直接写出其准线方程即可.【详解】由抛物线的方程为,则其准线方程为:故选:A11、C【解析】先由条件得出a,b满足,得出满足的基本事件数,再求出总的基本事件数,从而可得答案.【详解】直线到原点的距离不超过1,则所以当时,可以为5,6当时,可以为4,5,6当时,可以为4,5,6当时,可以为2,3,4,5,6当时,可以为1,2,3,4,5,6当时,可以为1,2,3,4,5,6满足的共有25种结果.将一枚骰子先后抛掷两次,若先后出现的点数分别记为a,b,共有种结果所以满足条件的概率为故选:C12、B【解析】根据递推式以及迭代即可.【详解】由,得,,,,,,.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】表示出、,根据题意,列出等式,化简整理即可得答案.【详解】,由题意得,所以整理可得,即.故答案为:.14、【解析】直接利用求平均数的公式即可求解.【详解】由已知得数据的平均数为,故答案为:.15、【解析】根据已知条件,结合数学归纳法的定义,即可求解.【详解】当,,故此时式子左边=.故答案为:.16、0【解析】设切点分别为,.利用导数的几何意义可得,则.由,,计算可得,进而求得点坐标代入方程即可求得结果.【详解】设切点分别为,由题意可得,则,即因为,,所以,即,解得,所以,则,解得故答案为:0三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)运用代入法直接求解即可;(2)设出直线的方程与抛物线方程联立,结合一元二次方程根与系数关系、平面向量数量积的坐标表示公式进行求解即可.【小问1详解】由已知可得:;【小问2详解】的斜率不为设,,∴OA→⋅因为直线与抛物线交于两点两点在轴的两侧,所以,即过定点.【点睛】关键点睛:运用一元二次方程根与系数关系是解题的关键.18、(1)(2)【解析】(1)根据题意列不等式组求解(2)判断的真假性后分别求解【小问1详解】由题意得,解得且故m的取值范围是【小问2详解】∵为假命题,∴p和q都是真命题,对于命题q,由题意得:恒成立,∴,∴,∴,解得故m的取值范围是19、(1)(2)【解析】(1)由二项式系数和公式可得答案;(2)求出的通项,利用的指数为整数可得答案.【小问1详解】的二项展开式中所有项的二项式系数之和,所以.【小问2详解】,因此时,有理项,有理项是第一项和第七项.20、(1)(2)【解析】首先用列举法,求得甲、乙两人各抽一题的所有可能情况.(1)根据上述分析,分别求得“甲抽到判断题,乙抽到选择题(2)根据上述分析,求得“甲、乙两人都抽到判断题”的概率,根据对立事件概率计算公司求得“甲、乙两人中至少有一人抽到选择题【详解】把3个选择题因此基本事件的总数为.(1)记“甲抽到选择题(2)记“甲、乙两人至少有一人抽到选择题【点睛】本小题主要考查互斥事件概率计算,考查对立事件,属于基础题.21、(1);(2).【解析】(1)利用等差数列的基本量,结合已知条件,列出方程组,求得首项和公差,即可写出通项公式;(2)根据(1)中所求,结合裂项求和法,即可求得.【小问1详解】因为是等差数列,其n前项和为,已知,设其公差为,故可得:,,解得,又,故.【小问2详解】由(1)知,,又,故.即.22、(1)证明见解析(2)【解析】(1)根据等腰三角形三线合一的性质得到、,即可得到平面,再根据,即可得证;(2)由面面垂直的性质得到平面,建立如图所示空间直角坐标系,设,即可得到点,,的坐标,最后利用空间向量法求出二面角的余弦值;【小问1详解】证明:连
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 花卉租摆服务合同范本
- 2026年宜宾职业技术学院单招职业适应性测试题库及答案1套
- 2026年湖南高速铁路职业技术学院单招职业技能测试必刷测试卷附答案
- 2026年海南软件职业技术学院单招综合素质考试题库附答案
- 2026年山东化工职业学院单招职业技能测试题库必考题
- 2026年湖北体育职业学院单招职业适应性测试题库及答案1套
- 2026年广东理工职业学院单招职业倾向性考试必刷测试卷及答案1套
- 2026年江西省上饶市单招职业倾向性考试必刷测试卷及答案1套
- 2026年甘肃畜牧工程职业技术学院单招职业倾向性考试题库及答案1套
- 2026年湖南大众传媒职业技术学院单招职业技能考试必刷测试卷及答案1套
- JCT2460-2018 预制钢筋混凝土化粪池
- 芯片开发职业生涯规划与管理
- 认知行为疗法(CBT)实操讲座
- GB/T 3683-2023橡胶软管及软管组合件油基或水基流体适用的钢丝编织增强液压型规范
- 重说二十年前的作品亮出你的舌苔或空空荡荡
- 身份证前六位与省市县区对照表可直接存入数据库
- 内分泌专业临床路径大全
- 党建知识题库附答案
- 竖井施工方案
- 初中化学渗透“德育”教案
- 制梁场制存梁台座检测方案
评论
0/150
提交评论