版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025年江苏省南通市包场中学数学高二第一学期期末质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知动点在直线上,过点作圆的切线,切点为,则线段的长度的最小值为()A. B.4C. D.2.如图,在正方体中,E为的中点,则直线与平面所成角的正弦值为()A. B.C. D.3.已知点,和直线,若在坐标平面内存在一点P,使,且点P到直线l的距离为2,则点P的坐标为()A.或 B.或C.或 D.或4.设命题,,则为().A., B.,C., D.,5.椭圆的焦点坐标为()A. B.C. D.6.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德并称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆就是他的研究成果之一.指的是:已知动点与两定点的距离之比,那么点的轨迹就是阿波罗尼斯圆.已知动点的轨迹是阿波罗尼斯圆,其方程为,其中,定点为轴上一点,定点的坐标为,若点,则的最小值为()A. B.C. D.7.直线的倾斜角,则其斜率的取值范围为()A. B.C. D.8.与的等差中项是()A. B.C. D.9.两位同学课余玩一种类似于古代印度的“梵塔游戏”:有3个柱子甲、乙、丙,甲柱上有个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图).把这个盘子从甲柱全部移到乙柱游戏结束,在移动的过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下.设游戏结束需要移动的最少次数为,则当时,和满足A. B.C. D.10.双曲线:(,)的左、右焦点分别为、,点在双曲线上,,,则的离心率为()A. B.2C. D.11.曲线在处的切线的斜率为()A.-1 B.1C.2 D.312.设点关于坐标原点的对称点是B,则等于()A.4 B.C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.如图的一系列正方形图案称为谢尔宾斯基地毯,图案的做法是:把一个正方形分成9个全等的小正方形,对中间的一个小正方形进行着色得到第1个图案(图1);在第1个图案中对没有着色的小正方形再重复以上做法得到第2个图案(图2);以此类推,每进行一次操作,就得到一个新的正方形图案,设原正方形的边长为1,记第n个图案中所有着色的正方形的面积之和为,则数列的通项公式______14.直线的倾斜角为_______________.15.已知点P是抛物线上的一个动点,则点P到点M(0,2)的距离与点P到该抛物线准线的距离之和的最小值为______________16.已知数列满足,,的前项和为,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足,(1)证明是等比数列,(2)求数列的前项和18.(12分)已知函数,其中(1)讨论的单调性;(2)若不等式对一切恒成立,求实数k的最大值19.(12分)如图,在四棱锥中,底面为正方形,底面,,为棱的中点.(1)求直线与所成角的余弦值;(2)求直线与平面所成角的正弦值;(3)求二面角的余弦值.20.(12分)已知函数,满足,已知点是曲线上任意一点,曲线在处的切线为.(1)求切线的倾斜角的取值范围;(2)若过点可作曲线的三条切线,求实数的取值范围.21.(12分)若双曲线-=1(a>0,b>0)的焦点坐标分别为和,且该双曲线经过点P(3,1)(1)求双曲线的方程;(2)若F是双曲线的右焦点,Q是双曲线上的一点,过点F,Q的直线l与y轴交于点M,且,求直线l的斜率22.(10分)已知O为坐标原点,点,设动点W到直线的距离为d,且,.(1)记动点W的轨迹为曲线C,求曲线C的方程;(2)若直线l与曲线C交于A,B两点,直线与曲线C交于,两点,直线l与的交点为P(P不在曲线C上),且,设直线l,的斜率分别为k,.求证:为定值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求出的最小值,由切线长公式可结论【详解】解:由,得最小时,最小,而,所以故选:A.2、D【解析】构建空间直角坐标系,求直线的方向向量、平面的法向量,应用空间向量的坐标表示,求直线与平面所成角的正弦值.【详解】以点D为坐标原点,向量分别为x,y,z轴建立空间直角坐标系,则,,,,可得,,,设面的法向量为,有,取,则,所以,,,则直线与平面所成角的正弦值为故选:D.3、C【解析】设点的坐标为,根据,点到直线的距离为,联立方程组即可求解.【详解】解:设点的坐标为,线段的中点的坐标为,,∴的垂直平分线方程为,即,∵点在直线上,∴,又点到直线:的距离为,∴,即,联立可得、或、,∴所求点的坐标为或,故选:C4、B【解析】根据全称命题和特称命题互为否定,即可得到结果.【详解】因为命题,,所以为,.故选:B.5、B【解析】根据方程可得,且焦点轴上,然后可得答案.【详解】由椭圆的方程可得,且焦点在轴上,所以,即,故焦点坐标为故选:B6、D【解析】设,,根据和求出a的值,由,两点之间直线最短,可得的最小值为,根据坐标求出即可.【详解】设,,所以,由,所以,因为且,所以,整理可得,又动点M的轨迹是,所以,解得,所以,又,所以,因为,所以的最小值,当M在位置或时等号成立.故选:D7、B【解析】根据倾斜角和斜率的关系,确定正确选项.【详解】直线的倾斜角为,则斜率为,在上为增函数.由于直线的倾斜角,所以其斜率的取值范围为,即.故选:B【点睛】本小题主要考查倾斜角和斜率的关系,属于基础题.8、A【解析】代入等差中项公式即可解决.【详解】与的等差中项是故选:A9、C【解析】通过写出几项,寻找规律,即可得到和满足的递推公式.【详解】若甲柱有个盘,甲柱上的盘从上往下设为,其中,,当时,将移到乙柱,只移动1次;当时,将移到乙柱,将移到乙柱,移动2次;当时,将移到丙柱,将移到丙柱,将移到乙柱,再将移到乙柱,将移到乙柱,;当时,将上面的3个移到丙柱,共次,然后将移到乙柱,再将丙柱的3个移到乙柱,共次,所以次;当时,将上面的4个移到丙柱,共次,然后将移到乙柱,再将丙柱的4个移到乙柱,共次,所以次;……以此类推,可知,故选.【点睛】主要考查了数列递推公式的求解,属于中档题.这类型题的关键是写出几项,寻找规律,从而得到对应的递推公式.10、C【解析】根据双曲线定义、余弦定理,结合题意,求得关系,即可求得离心率.【详解】根据题意,作图如下:不妨设,则,,①;在△中,由余弦定理可得:,代值得:,②;联立①②两式可得:;在△和△中,由,可得:,整理得:,③;联立②③可得:,又,故可得:,则,则,故离心率为.故选:C.11、D【解析】先求解出导函数,然后代入到导函数中,所求导数值即为切线斜率.【详解】因为,所以,所以切线的斜率为.故选:D.12、A【解析】求出点关于坐标原点的对称点是B,再利用两点之间的距离即可求得结果.【详解】点关于坐标原点的对称点是故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意,归纳总结,结合等比数列的前项和公式,即可求得的通项公式.【详解】结合已知条件,归纳总结如下:第一个图案中,着色正方形的面积即;第二个图案中,新着色的正方形面积是,故着色正方形的面积即;第三个图案中,新着色的正方形面积是,故着色正方形的面积即;第个图案中,新着色的正方形面积是,故着色正方形的面积即.故.故答案为:.14、【解析】由直线的斜率为,得到,即可求解.【详解】由题意,可知直线的斜率为,设直线的倾斜角为,则,解得,即换线的倾斜角为.【点睛】本题主要考查直线的倾斜角的求解问题,其中解答中熟记直线的倾斜角与斜率的关系,合理准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.15、【解析】由抛物线的定义得:,所以,当三点共线时,最小可得答案.【详解】如图所示:,由抛物线的定义得:,所以,由图象知:当三点共线时,最小,.故答案为:.16、【解析】分析出当为正奇数时,,可求得的值,再分析出当为正偶数时,,可求得的值,进而可求得的值.【详解】由题知,当为正奇数时,,于是,,,,,所以.又因为当为正偶数时,,且,所以两式相加可得,于是,两式相减得.所以,故.故答案为:.【点睛】关键点点睛:本题的解题关键在于分析出当为正奇数时,,以及当为正偶数时,,找出规律,结合并项求和法求出以及的值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】(1)利用定义法证明是一个与n无关的非零常数,从而得出结论;(2)由(1)求出,利用分组求和法求【详解】(1)由得,所以,所以是首项为,公比为的等比数列,,所以,(2)由(1)知的通项公式为;则所以【点睛】本题主要考查等比数列的证明以及分组求和法,属于基础题18、(1)答案见解析(2)【解析】(1)先对函数求导,然后分和讨论导数的正负,从而可求出函数的单调区间,(2)由题意得恒成立,构造函数,利用导数求出其最小值即可【小问1详解】由,得当时,恒成立,∴在上单调递增当时,令,得,得,∴在上单调递增,在上单调递减综上所述:当时,在上单调递增;当时,在上单调递增,在上单调递减【小问2详解】依题意得对一切恒成立,即令,则令,则在上单调递增,而当时,,即;当时,,即∴在上单调递减,在上单调递增∴∴,即k的最大值为19、(1);(2);(3).【解析】以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,设.(1)写出、的坐标,利用空间向量法计算出直线与所成角的余弦值;(2)求出平面的一个法向量的坐标,利用空间向量法可计算得出直线与平面所成角的正弦值;(3)求出平面的一个法向量的坐标,利用空间向量法可求得二面角的余弦值.【详解】平面,四边形为正方形,设.以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,如下图所示:则、、、、、.(1),,,所以,异面直线、所成角的余弦值为;(2)设平面的一个法向量为,,,由,可得,取,可得,则,,,因此,直线与平面所成角的正弦值为;(3)设平面的一个法向量为,,,由,可得,得,取,则,,所以,平面的一个法向量为,,由图形可知,二面角为锐角,因此,二面角的余弦值为.【点睛】方法点睛:求空间角的常用方法:(1)定义法:由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应的三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量的夹角(两直线的方向向量、直线的方向向量与平面的法向量、两平面的法向量)的余弦值,即可求得结果.20、(1)(2)【解析】(1)根据题意求出值,求导后通过导数的值域求出斜率范围,从而得到倾角范围.(2)利用导数几何意义得到过P点的切线方程,化简后构造m的函数,求新函数的极大值极小值即可.【小问1详解】因为,则,解得,所以,则,故,,,,,切线的倾斜角的的取值范围是,,.小问2详解】设曲线与过点,的切线相切于点,则切线的斜率为,所以切线方程为因为点,在切线上,所以,即,由题意,该方程有三解设,则,令,解得或,当或时,,当时,,所以在和上单调递减,在上单调递增,故的极小值为,极大值为,所以实数的取值范围是.21、(1)(2)【解析】(1)根据题意列方程组求解(2)待定系数法设直线后,由条件求出坐标后代入双曲线方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人力资源主管工作计划及团队建设方案
- 产品营销策划方案与推广活动
- 2025年及未来5年中国建材行业市场运营现状及行业发展趋势报告
- 2025中国船舶舱室空气净化过滤器盐雾腐蚀防护研究
- 2025中国自动驾驶算法开发竞争格局与商业化路径报告
- 2025中国自动驾驶技术发展瓶颈与商业化应用前景报告
- 2025中国美妆集合店商业模式与盈利能力研究
- 2025中国美妆行业消费者忠诚度测量模型研究报告
- 2026年中国吻合器项目经营分析报告
- 2025中国美妆行业并购案例分析与整合策略报告
- 2025年国家公务员《行测》真题及答案
- 路面铣刨工程规范施工方案
- 掼蛋活动方案
- 急性心肌梗死护理管理指南
- 企业信息安全培训课件
- 铝板板材外墙施工技术交底
- 2025年三元锂电池行业分析报告及未来发展趋势预测
- 蛋糕房员工合同
- 2025下半年四川省自然资源投资集团社会招聘考试笔试参考题库附答案解析
- 2025山东省教育厅直属事业单位省教育发展服务中心第二批招聘9人考试笔试模拟试题及答案解析
- 悬灌连续梁张拉压浆施工方案
评论
0/150
提交评论