版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025年安徽省亳州市涡阳县第一中学数学高二第一学期期末监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如果,那么下面一定成立的是()A. B.C. D.2.若双曲线(,)的焦距为,且渐近线经过点,则此双曲线的方程为()A. B.C. D.3.已知数列中,,(),则等于()A. B.C. D.24.抛物线的焦点坐标为A. B.C. D.5.如图,在三棱锥中,,二面角的正弦值是,则三棱锥外接球的表面积是()A. B.C. D.6.一动圆与两圆x2+y2=1和x2+y2﹣8x+12=0都外切,则动圆圆心轨迹为()A.圆 B.椭圆C.双曲线的一支 D.抛物线7.已知双曲线方程为,过点的直线与双曲线只有一个公共点,则符合题意的直线的条数共有()A.4条 B.3条C.2条 D.1条8.已知数列的前项和,且,则()A. B.C. D.9.将函数的图象向左平移个单位长度后,得到函数的图象,则()A. B.C. D.10.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A. B.C. D.11.有甲、乙两个抽奖箱,甲箱中有3张无奖票3张有奖票,乙箱中有4张无奖票2张有奖票,某人先从甲箱中抽出一张放进乙箱,再从乙箱中任意抽出一张,则最后抽到有奖票的概率是()A. B.C. D.12.在等比数列中,若,则公比()A. B.C.2 D.3二、填空题:本题共4小题,每小题5分,共20分。13.为和的等差中项,则_____________.14.已知直线与直线垂直,则实数的值为___________.15.记为等差数列的前n项和.若,则_________.16.甲、乙两名学生通过某次听力测试的概率分别为和,且是否通过听力测试相互独立,两人同时参加测试,其中有且只有一人能通过的概率是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在等差数列中,已知公差,且成等比数列(1)求数列的通项公式;(2)记,求数列的前项和18.(12分)在等差数列中,已知公差,前项和(其中)(1)求;(2)求和:19.(12分)已知等差数列的前项和为,且,(1)求数列的通项公式;(2)设,求数列的前项和20.(12分)已知点及圆,点P是圆B上任意一点,线段的垂直平分线l交半径于点T,当点P在圆上运动时,记点T的轨迹为曲线E(1)求曲线E的方程;(2)设存在斜率不为零且平行的两条直线,,它们与曲线E分别交于点C、D、M、N,且四边形是菱形,求该菱形周长的最大值21.(12分)如图所示,在正方体中,E是棱的中点.(Ⅰ)求直线BE与平面所成的角的正弦值;(Ⅱ)在棱上是否存在一点F,使平面?证明你的结论.22.(10分)平行六面体,(1)若,,,,,,求长;(2)若以顶点A为端点的三条棱长均为2,且它们彼此的夹角都是60°,则AC与所成角的余弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据不等式的基本性质,以及特例法和作差比较法,逐项计算,即可求解.【详解】对于A中,当时,,所以不正确;对于B中,因为,根据不等式的性质,可得,对于C中,由,可得可得,所以,所以正确;对于D中,由,可得,则,所以,所以不正确.故选:C.2、B【解析】根据题意得到,,解得答案.【详解】双曲线(,)的焦距为,故,.且渐近线经过点,故,故,双曲线方程为:.故选:.【点睛】本题考查了双曲线方程,意在考查学生对于双曲线基本知识的掌握情况.3、D【解析】由已知条件可得,,…,即是周期为3的数列,即可求.【详解】由题设,知:,,,…,∴是周期为3的数列,而的余数为1,∴.故选:D.4、D【解析】抛物线的标准方程为,从而可得其焦点坐标【详解】抛物线的标准方程为,故其焦点坐标为,故选D.【点睛】本题考查抛物线的性质,属基础题5、A【解析】利用二面角S﹣AC﹣B的余弦值求得,由此判断出,且两两垂直,由此将三棱锥补形成正方体,利用正方体的外接球半径,求得外接球的表面积.【详解】设是的中点,连接,由于,所以,所以是二面角的平面角,所以.在三角形中,,在三角形中,,在三角形中,由余弦定理得:,所以,由于,所以两两垂直.由此将三棱锥补形成正方体如下图所示,正方体的边长为2,则体对角线长为.设正方体外接球的半径为,则,所以外接球的表面积为,故选:.6、C【解析】设动圆圆心,与两圆x2+y2=1和x2+y2﹣8x+12=0都外切,列出几何关系式,化简,再根据圆锥曲线的定义,可得到动圆圆心轨迹.【详解】设动圆圆心,半径为,圆x2+y2=1的圆心为,半径为,圆x2+y2﹣8x+12=0,得,则圆心,半径为,根据圆与圆相切,则,,两式相减得,根据定义可得动圆圆心轨迹为双曲线的一支.故选:C【点睛】本题考查了两圆的位置关系,圆锥曲线的定义,属于基础题.7、A【解析】利用双曲线渐近线的性质,结合一元二次方程根的判别式进行求解即可.【详解】解:双曲线的渐近线方程为,右顶点为.①直线与双曲线只有一个公共点;②过点平行于渐近线时,直线与双曲线只有一个公共点;③设过的切线方程为与双曲线联立,可得,由,即,解得,直线的条数为1.综上可得,直线的条数为4.故选:A,.8、C【解析】由an=Sn-Sn-1,【详解】解:因为,所以,,两式相减可得,即,因为,,所以,即,时,也满足上式,所以,所以,故选:C.9、A【解析】先化简函数表达式,然后再平移即可.【详解】函数的图象向左平移个单位长度后,得到的图象.故选:A10、C【解析】根据题先求出阅读过西游记人数,进而得解.【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C【点睛】本题考查容斥原理,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题11、B【解析】先分为在甲箱中抽出一张有奖票放入乙箱和在甲箱中抽出一张无奖票放入乙箱,进而结合条件概率求概率的方法求得答案.【详解】记表示在甲箱中抽出一张有奖票放进乙箱,表示在甲箱中抽出一张无奖票放进乙箱,A表示最后抽到有奖票.所以,,于是.故选:B.12、C【解析】由题得,化简即得解.【详解】因为,所以,所以,解得.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用等差中项的定义可求得结果.【详解】由等差中项的定义可得.故答案为:.14、【解析】由直线垂直的充要条件列式计算即可得答案.【详解】解:因为直线与直线垂直,所以,解得故答案为:15、5【解析】根据等差数列前项和的公式及等差数列的性质即可得出答案.【详解】解:,所以.故答案为:5.16、##0.5【解析】分两种情况,结合相互独立事件公式即可求解.【详解】记甲,乙通过听力测试的分别为事件,则可得,两人有且仅有一人通过为事件,故所求事件概率为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)an=n(2)【解析】(1)由已知条件可得(d+2)2=2d+7,从而可求出公差,进而可求得数列的通项公式,(2)由(1)得,然后利用错位相减法求【小问1详解】因a1,a2+1,a3+6成等比数列,所以又a1=1,所以(d+2)2=2d+7,所以d=1或d=(舍),所以an=n;【小问2详解】因为,所以,所以,所以所以18、(1)12(2)18【解析】(1)根据已知的,利用等差数列的通项公式和前n项和公式即可列式求解;(2)由第(1)问中求解出的的通项公式,要求前12项绝对值的和,可以发现,该数列前6项为正项,后6项为负项,因此在算和的时候,后6项和可以取原通项公式的相反数即可计算,即为,然后再加上前6项和,即为要求的前12项绝对值的和.【小问1详解】由题意可得,在等差数列中,已知公差,前项和所以,解之得,所以n=12【小问2详解】由(1)可知数列{an}的通项公式为,所以即19、(1)(2)【解析】(1)设等差数列公差为d,首项为a1,根据已知条件列出方程组求解a1,d,代入通项公式即可得答案;(2)根据等差、等比数列的前n项和公式,利用分组求和法即可求解【小问1详解】解:设等差数列公差为d,首项为a1,由题意,有,解得,所以;【小问2详解】解:,所以20、(1)(2)【解析】(1)根据椭圆的定义和性质,建立方程求出,即可(2)设的方程为,,,,,设的方程为,,,,,分别联立直线方程和椭圆方程,运用韦达定理和判别式大于0,以及弦长公式,求得,,运用菱形和椭圆的对称性可得,关于原点对称,结合菱形的对角线垂直和向量数量积为0,可得,设菱形的周长为,运用基本不等式,计算可得所求最大值【小问1详解】点在线段的垂直平分线上,,又,曲线是以坐标原点为中心,和为焦点,长轴长为的椭圆设曲线的方程为,,,曲线的方程为【小问2详解】设的方程为,,,,,设的方程为,,,,,联立可得,由可得,化简可得,①,,,同理可得,因为四边形为菱形,所以,所以,又因为,所以,所以,关于原点对称,又椭圆关于原点对称,所以,关于原点对称,,也关于原点对称,所以且,所以,,,,因为四边形为菱形,可得,即,即,即,可得,化简可得,设菱形的周长为,则,当且仅当,即时等号成立,此时,满足①,所以菱形的周长的最大值为【点睛】关键点点睛:在处理此类直线与椭圆相交问题中,一般先设出直线方程,联立方程,利用韦达定理得出,,再具体问题具体分析,一般涉及弦长计算问题,运算比较繁琐,需要较强的运算能力,属于难题。21、(1);(2)详见解析【解析】设正方体的棱长为1.如图所示,以为单位正交基底建立空间直角坐标系.(Ⅰ)依题意,得,所以.在正方体中,因为,所以是平面的一个法向量,设直线BE和平面所成的角为,则.即直线BE和平面所成的角的正弦值为.(Ⅱ)在棱上存在点F,使.事实
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 80601-2-89:2025 FR Medical electrical equipment - Part 2-89: Particular requirements for the basic safety and essential performance of medical beds for children
- 2025年高职作物生产(技术实操)试题及答案
- 老人幸福预防诈骗课件
- 垃圾分类宣传教育生活垃圾分类科普课件模版
- 客服礼仪培训课件客服培训
- 制药厂三级培训课件
- 制度培训方案课件
- 工程安全培训计划及内容课件
- 工程全过程咨询培训课件
- 手术AI在骨科精准规划中的应用实践
- 工地旧木材运输方案(3篇)
- 工厂车间企业SQCDP看板运行指南
- 2025年哈尔滨铁道职业技术学院单招笔试英语试题库含答案解析(5套100道合辑-单选题)
- 矿产企业管理办法
- 企业账期管理暂行办法
- 从大庆油田股权改革透视公司股权结构优化与治理创新
- 慈善春节慰问活动方案
- 2025至2030中国电地暖系统行业市场现状分析及竞争格局与投资发展报告
- 互联网金融浪潮下A银行网点智能轻型化转型之路
- 胸科手术麻醉管理专家共识
- 物联网智能家居设备智能控制手册
评论
0/150
提交评论