黑龙江省庆安县第三中学2026届高二上数学期末联考模拟试题含解析_第1页
黑龙江省庆安县第三中学2026届高二上数学期末联考模拟试题含解析_第2页
黑龙江省庆安县第三中学2026届高二上数学期末联考模拟试题含解析_第3页
黑龙江省庆安县第三中学2026届高二上数学期末联考模拟试题含解析_第4页
黑龙江省庆安县第三中学2026届高二上数学期末联考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省庆安县第三中学2026届高二上数学期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若数列是等差数列,其前n项和为,若,且,则等于()A. B.C. D.2.已知抛物线上的点到其准线的距离为,则()A. B.C. D.3.若双曲线经过点,且它的两条渐近线方程是,则双曲线的方程是()A. B.C. D.4.已知函数,若在处取得极值,且恒成立,则实数的最大值为()A. B.C. D.5.《周髀算经》中有这样一个问题:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,自冬至日起,其日影长依次成等差数列,立春当日日影长为9.5尺,立夏当日日影长为2.5尺,则冬至当日日影长为()A.12.5尺 B.13尺C.13.5尺 D.14尺6.在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做“等和数列”,这个数叫做数列的公和.已知等和数列{an}中,,公和为5,则()A.2 B.﹣2C.3 D.﹣37.已知数列满足,且,则()A.2 B.3C.5 D.88.已知直线l的方向向量,平面α的一个法向量为,则直线l与平面α的位置关系是()A.平行 B.垂直C.在平面内 D.平行或在平面内9.圆上到直线的距离为的点共有A.个 B.个C.个 D.个10.是数列,,,-17,中的第几项()A第项 B.第项C.第项 D.第项11.若实数满足,则点不可能落在()A.第一象限 B.第二象限C.第三象限 D.第四象限12.某学校随机抽取了部分学生,对他们每周使用手机的时间进行统计,得到如下的频率分布直方图.则下列说法:①;②若抽取100人,则平均用时13.75小时;③若从每周使用时间在,,三组内的学生中用分层抽样的方法选取8人进行访谈,则应从使用时间在内的学生中选取的人数为3.其中正确的序号是()A.①② B.①③C.②③ D.①②③二、填空题:本题共4小题,每小题5分,共20分。13.已知焦点在轴上的双曲线,其渐近线方程为,焦距为,则该双曲线的标准方程为________14.若函数在区间上单调递减,则实数的取值范围是____________.15.已知曲线,则以下结论正确的是______.①曲线C关于点对称;②曲线C关于y轴对称;③曲线C被x轴所截得的弦长为2;④曲线C上的点到原点距离都不超过2.16.若点为圆上的一个动点,则点到直线距离的最大值为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的短轴长为2,左、右焦点分别为,,过且垂直于长轴的弦长为1(1)求椭圆C的标准方程;(2)若A,B为椭圆C上位于x轴同侧的两点,且,共线,求四边形的面积的最大值18.(12分)如图所示,是棱长为的正方体,是棱的中点,是棱的中点(1)求直线与平面所成角的正弦值;(2)求到平面的距离19.(12分)已知函数的图象在点P(0,f(0))处的切线方程是(1)求a、b的值;(2)求函数的极值.20.(12分)已知点为椭圆C的右焦点,P为椭圆上一点,且(O为坐标原点),.(1)求椭圆C的标准方程;(2)经过点的直线l与椭圆C交于A,B两点,求弦的取值范围.21.(12分)设A,B为曲线C:y=上两点,A与B的横坐标之和为4(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程22.(10分)如图,四棱锥P-ABCD中,PA平面ABCD,,∠BAD=120o,AB=AD=2,点M在线段PD上,且DM=2MP,平面(1)求证:平面MAC平面PAD;(2)若PA=6,求平面PAB和平面MAC所成锐二面角的余弦值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由等差数列的通项公式和前项和公式求出的首项和公差,即可求出.【详解】设等差数列的公差为,则解得:,所以.故选:B.2、C【解析】首先根据抛物线的标准方程的形式,确定的值,再根据焦半径公式求解.【详解】,,因为点到的准线的距离为,所以,得故选:C3、A【解析】根据双曲线渐近线方程设出方程,再由其过的点即可求解.【详解】渐近线方程是,设双曲线方程为,又因为双曲线经过点,所以有,所以双曲线方程为,化为标准方程为.故选:A4、D【解析】根据已知在处取得极值,可得,将在恒成立,转化为,只需求,求出最小值即可得答案【详解】解:,,由在处取得极值,得,解得,所以,,其中,.当时,,此时函数单调递减,当时,,此时函数单调递增,故函数在处取得极小值,,恒成立,转化为,令,,则,,令得,当时,,此时函数单调递减,当时,,此时函数单调递增,所以,即得,故选:D5、B【解析】设十二节气自冬至日起的日影长构成的等差数列为,利用等差数列的性质即可求解.【详解】设十二节气自冬至日起的日影长构成的等差数列为,则立春当日日影长为,立夏当日日影长为,故所以冬至当日日影长为.故选:B6、C【解析】利用已知即可求得,再利用已知可得:,问题得解【详解】解:根据题意,等和数列{an}中,,公和为5,则,即可得,又由an﹣1+an=5,则,则3;故选C【点睛】本题主要考查了新概念知识,考查理解能力及转化能力,还考查了数列的周期性,属于中档题7、D【解析】使用递推公式逐个求解,直到求出即可.【详解】因为所以,,,.故选:D8、D【解析】根据题意,结合线面位置关系的向量判断方法,即可求解.【详解】根据题意,因为,所以,所以直线l与平面α的位置关系是平行或在平面内故选:D9、C【解析】求出圆的圆心和半径,比较圆心到直线的距离和圆的半径的关系即可得解.【详解】圆可变为,圆心为,半径为,圆心到直线的距离,圆上到直线的距离为的点共有个.故选:C.【点睛】本题考查了圆与直线的位置关系,考查了学生合理转化的能力,属于基础题.10、C【解析】利用等差数列的通项公式即可求解【详解】设数列,,,,是首项为,公差d=-4的等差数列{},,令,得故选:C11、B【解析】作出给定的不等式组表示的平面区域,观察图形即可得解.【详解】因实数满足,作出不等式组表示的平面区域,如图中阴影部分,观察图形知,阴影区域不过第二象限,即点不可能落在第二象限.故选:B12、B【解析】根据频率分布直方图中小矩形的面积和为1可求出,再求出频率分布直方图的平均值,即为抽取100人的平均值的估计值,再利用分层抽样可确定出使用时间在内的学生中选取的人数为3.【详解】,故①正确;根据频率分布直方图可估计出平均值为,所以估计抽取100人的平均用时13.75小时,②的说法太绝对,故②错误;每周使用时间在,,三组内的学生的比例为,用分层抽样的方法选取8人进行访谈,则应从使用时间在内的学生中选取的人数为,故③正确.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据渐近线方程、焦距可得,,再根据双曲线参数关系、焦点的位置写出双曲线标准方程.详解】由题设,可知:,,∴由,可得,,又焦点在轴上,∴双曲线的标准方程为.故答案为:.14、【解析】求解定义域,由导函数小于0得到递减区间,进而得到不等式组,求出实数的取值范围.【详解】显然,且,由,以及考虑定义域x>0,解得:.在区间,上单调递减,∴,解得:.故答案为:15、②④【解析】将x换成,将y换成,若方程不变则关于原点对称;将x换成,曲线的方程不变则关于y轴对称;令通过解方程即可求得被x轴所截得的弦长;利用基本不等式即可判断出曲线C上y轴右侧的点到原点距离是否不超过2,根据曲线C关于y轴对称,即可判断出曲线C上的点到原点距离是否都不超过2.【详解】对于①,将x换成,将y换成,方程改变,则曲线C关于点不对称,故①错误;对于②,将x换成,曲线的方程不变,则曲线C关于y轴对称,故②正确;对于③,令得,,解得,即曲线C与x轴的交点为和,则曲线C被x轴所截得的弦长为,故③错误;对于④,当时,,可得,当且仅当时取等号,即,则,即曲线C上y轴右侧的点到原点的距离都不超过2,此曲线关于y轴对称,即曲线C上y轴左侧的点到原点的距离也不超过2,故④正确;故答案为:②④.16、7【解析】根据给定条件求出圆C的圆心C到直线l的距离即可计算作答.【详解】圆的圆心,半径,点C到直线的距离,所以圆C上点P到直线l距离的最大值为.故答案为:7三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)2【解析】(1)根据已知条件求得,由此求得椭圆的标准方程.(2)延长,交椭圆C于点.设出直线的方程并与椭圆方程联立,化简写出根与系数关系,根据对称性求得四边形的面积的表达式,利用换元法,结合基本不等式求得四边形的面积的最大值.【小问1详解】由题可知,即,因为过且垂直于长轴的弦长为1,所以,所以所以椭圆C的标准方程为【小问2详解】因为,共线,所以延长,交椭圆C于点.设,由(1)可知,可设直线的方程为联立,消去x可得,所以,由对称性可知设与间的距离为d,则四边形的面积令,则.因为,当且仅当时取等号,所以,即四边形的面积的最大值为2【点睛】在椭圆、双曲线、抛物线中,求三角形、四边形面积的最值问题,求解策略是:首先结合弦长公式、点到直线距离公式等求得面积的表达式;然后利用基本不等式、二次函数的性质等知识来求得最值.18、(1)(2)【解析】(1)以为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得直线与平面所成角的正弦值;(2)求出平面的法向量,利用空间向量法可求得到平面的距离.【小问1详解】解:以为坐标原点,、、所在直线分别为、、轴建立如下图所示的坐标系则、、、、、、,所以,,设平面的一个法向量为,,,由,取,可得,所以,,直线与平面所成角的正弦为小问2详解】解:设平面的一个法向量,,,由,即,令,得,,所以点到平面的距离为即到平面的距离为19、(1);(2)答案见解析【解析】(1)求出曲线的斜率,切点坐标,求出函数的导数,利用导函数值域斜率的关系,即可求出,(2)求出导函数的符号,判断函数的单调性即可得到函数的极值【详解】(1)因为函数的图象在点P(0,f(0))处的切线方程是,所以切线斜率是,且,求得,即点又函数,则所以依题意得解得(2)由(1)知所以令,解得或当,或;当,所以函数的单调递增区间是,,单调递减区间是所以当变化时,和变化情况如下表:0极大值极小值所以,20、(1)(2)【解析】(1)利用椭圆定义求得椭圆的即可解决;(2)经过点的直线l分为斜率不存在和存在两种情况,分别去求弦,再去求其取值范围即可.【小问1详解】由题意得.记左焦点为,,则,,解得.由椭圆定义得:,则,所以椭圆C的方程为:.【小问2详解】①当直线l的斜率不存在时,.②当直线l的斜率存在时,设斜率为k,则l的方程为.联立椭圆与直线的方程(由于点在椭圆内,∴成立),且,,令,则,,,由得,综上所述,弦的取值范围为.【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形21、(1)1;(2)y=x+7【解析】(1)设A(x1,y1),B(x2,y2),直线AB的斜率k==,代入即可求得斜率;(2)由(1)中直线AB的斜率,根据导数的几何意义求得M点坐标,设直线AB的方程为y=x+m,与抛物线联立,求得根,结合弦长公式求得AB,由知,|AB|=2|MN|,从而求得参数m.【详解】解:(1)设A(x1,y1),B(x2,y2),则x1≠x2,y1=,y2=,x1+x2=4,于是直线AB的斜率k===1(2)由y=,得y′=设M(x3,y3),由题设知=1,解得x3=2,于是M(2,1)设直线AB的方程为y=x+m,故线段AB的中点为N(2,2+m),|MN|=|m+1|将y=x+m代入y=得x2-4x-4m=0当Δ=16(m+1)>0,即m>-1时,x1,2=2±2从而|AB|=|x1-x2|=由题设知|AB|=2|MN|,即=2(m+1),解得m=7所以直线AB的方程为y=x+722、(1)证明见解析(2)【解析】(1)连接BD交AC于点E,连接ME,由所给条件推理出CA⊥AD,进而得CA⊥平面PAD,证得结论(2)首先以A为原点,射线AC,AD,AP分别为x,y,z轴非负半轴建立空间直角坐标系,再利用向量法求解二面角即可【小问1详

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论