合肥市中考数学-一元一次不等式易错压轴解答题专题练习(及答案)_第1页
合肥市中考数学-一元一次不等式易错压轴解答题专题练习(及答案)_第2页
合肥市中考数学-一元一次不等式易错压轴解答题专题练习(及答案)_第3页
合肥市中考数学-一元一次不等式易错压轴解答题专题练习(及答案)_第4页
合肥市中考数学-一元一次不等式易错压轴解答题专题练习(及答案)_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

合肥市中考数学一元一次不等式易错压轴解答题专题练习(及答案)一、一元一次不等式易错压轴解答题1.宜宾某商店决定购进A.B两种纪念品.购进A种纪念品7件,B种纪念品2件和购进A种纪念品5件,B种纪念品6件均需80元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于750元,但不超过764元,那么该商店共有几种进货方案?(3)已知商家出售一件A种纪念品可获利a元,出售一件B种纪念品可获利(5﹣a)元,试问在(2)的条件下,商家采用哪种方案可获利最多?(商家出售的纪念品均不低于成本价)2.对非负实数x“四舍五入”到个位的值记作<x>,即:当n为非负整数时,若n-≤x<n+,则<x>=n.如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,….(1)填空:①<π>=________;②如果<2x-1>=3,则实数x的取值范围为________;(2)举例说明<x+y>=<x>+<y>不恒成立;(3)求满足<x>=x的所有非负实数x的值.3.某服装厂生产一种西装和领带,西装每套定价400元,领带每条定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案①:买一套西装送一条领带;方案②:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20)(1)若该客户按方案①购买,需付款________元(用含x的代数式表示);若该客户按方案②购买,需付款________元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法并计算出此种方案的付款金额.4.陆老师去水果批发市场采购苹果,他看中了A,B两家苹果,这两家苹果品质一样,零售价都我6元/千克,批发价各不相同.A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.B家的规定如下表:数量范围(千克)0~500部分500以上~15001500以上~2500部分2500以上部分价格补贴零售价的95%零售价的85%零售价的75%零售价的70%(1)如果他批发700千克苹果,则他在A、B两家批发分别需要多少元?(2)如果他批发x千克苹果(1500<x<2000),请你分别用含x的代数式表示他在A、B两家批发所需的费用;(3)A、B两店在互相竞争中开始了互怼,B说A店的苹果总价有不合理的,有时候买的少反而贵,忽悠消费者;A说B的总价计算太麻烦,把消费者都弄糊涂了;旁边陆老师听完,提出两个问题希望同学们帮忙解决:①能否举例说明A店买的多反而便宜?②B店老板比较聪明,在平时工作中发现有巧妙的方法:总价=购买数量×单价+价格补贴;注:不同的单价,补贴价格也不同;只需提前算好即可填下表:数量范围(千克)0~500部分500以上~15001500以上~25002500以上部分价格补贴0元300▲

▲5.有大小两种货车,3辆大货车与2辆小货车一次可以运货21吨,2辆大货车与4辆小货车一次可以运货22吨.(1)每辆大货车和每辆小货车一次各可以运货多少吨?(2)现有这两种货车共10辆,要求一次运货不低于35吨,则其中大货车至少多少辆?(用不等式解答)(3)日前有23吨货物需要运输,欲租用这两种货车运送,要求全部货物一次运完且每辆车必须装满.已知每辆大货车一次运货租金为300元,每辆小货车一次运货租金为200元,请列出所有的运输方案井求出最少租金.6.某公园的门票每张20元,一次性使用.考虑到人们的不同需求,也为了吸引更多的游客,该公园除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法.年票分A,B,C三类,A类年票每张240元,持票进入该园区时,无需再购买门票;B类年票每张120元,持票者进入该园区时,需再购买门票,每次4元;C类年票每张80元,持票者进入该园区时,需再购买门票,每次6元.(1)如果只能选择一种购买年票的方式,并且计划在一年中花费160元在该公园的门票上,通过计算,找出可进入该园区次数最多的方式.(2)一年中进入该公园超过多少次时,A类年票比较合算?7.学校准备购进一批篮球和排球,买2个篮球和3个排球共需230元,买3个篮球和2个排球共需290元。(1)求一个篮球和一个排球的售价各是多少元?(2)学校欲购进篮球和排球共120个,且排球的数量不多于篮球的数量的2倍少10,求出最多购买排球多少个?8.为了让孩子们了解更多的海洋文化知识,市海洋局购买了一批有关海洋文化知识的科普书籍和绘本故事书籍捐赠给市里的几所中小学校.经了解,以两类书的平均单价计算,30本科普书籍和50本绘本故事书籍共需2100元;20本科普书籍比10本绘本故事书籍多100元.(1)求平均每本科普书籍和绘本故事书籍各是多少元.(2)计划每所学校捐赠书籍数目和总费用相同.其中每所学校的科普书籍大于115本,科普书籍比绘本故事书籍多30本,总费用不超过5000元,请求出所有符合条件的购书方案.9.某小区准备新建60

个停车位,以解决小区停车难的问题。已知新建个地上停车位和个地下停车位共需1.7

万元:新建4

个地上停车位和2

个地下停车位共需1.4

万元。(1)该小区新建1

个地上停车位和1个地下停车位各需多少万元?(2)若该小区新建车位的投资金额超过14

万元而不超过15万元,问共有几种建造方案?(3)对(2)中的几种建造方案中,哪种方案的投资最少?并求出最少投资金额.10.为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担,若国家财政拨付资金不超过11800万元,地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校改扩建资金分别为每所300万元和500万元,请问共有哪几种改扩建方案?11.某商店需要购进甲、乙两种商品共180件其进价和售价如表:(注:获利=售价进价)(1)若商店计划销售完这批商品后能获利1240元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于5040元,且销售完这批商品后获利多于1312元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.12.郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)郑老师有1000元,他计划为全班40位同学每人购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品,共有哪几种购买书包和词典的方案?【参考答案】***试卷处理标记,请不要删除一、一元一次不等式易错压轴解答题1.(1)解:设购进A种纪念品每件需x元、B种纪念品每件需y元,根据题意得:{7x+2y=805x+6y=80解得:{x=10y=5答:购进A种纪念品每件需10元、B种纪念品每件需5解析:(1)解:设购进A种纪念品每件需x元、B种纪念品每件需y元,根据题意得:解得:答:购进A种纪念品每件需10元、B种纪念品每件需5元;(2)解:设购进A种纪念品t件,则购进B种纪念品(100﹣t)件,由题意得:750≤5t+500≤764解得∵t为正整数∴t=50,51,52∴有三种方案.第一种方案:购进A种纪念品50件,B种纪念品50件;第二种方案:购进A种纪念品51件,B种纪念品50件;第三种方案:购进A种纪念品52件,B种纪念品48件;(3)解:第一种方案商家可获利:w=50a+50(5﹣a)=250(元);第二种方案商家可获利:w=51a+49(5﹣a)=245+2a(元);第三种方案商家可获利:w=52a+48(5﹣a)=240+4a(元).当a=2.5时,三种方案获利相同;当0≤a<2.5时,方案一获利最多;当2.5<a≤5时,方案三获利最多.【解析】【分析】(1)设购进A种纪念品每件需x元、B种纪念品每件需y元,根据题意得关于x和y的二元一次方程组,解得x和y的值即可;(2)设购进A种纪念品t件,则购进B种纪念品(100﹣t)件,由题意得关于t的不等式,解得t的范围,再由t为正整数,可得t的值,从而方案数可得;(3)分别写出三种方案关于a的利润函数,根据一次函数的性质可得答案.2.(1)3;(2)解:举反例:<0.6>+<0.7>=1+1=2,而<0.6+0.7>=<1.3>=1,∴<0.6>+<0.7>≠<0.6+0.7>,∴<x+y>=<x>+<y>不一定成立解析:(1)3;(2)解:举反例:<0.6>+<0.7>=1+1=2,而<0.6+0.7>=<1.3>=1,∴<0.6>+<0.7>≠<0.6+0.7>,∴<x+y>=<x>+<y>不一定成立;(3)解:∵x≥0,x为整数,设x=k,k为整数,则x=k,∴<k>=k,∴k−≤k<k+,k≥0,∵0≤k≤2,∴k=0,1,2,∴x=0,,.【解析】【解答】解:(1)①∵π≈3.14,∴<π>=3;②由题意得:2.5≤2x-1<3.5,解得:≤x<;【分析】(1)①π的十分位为1,应该舍去,所以精确到个位是3;②如果精确数是3,那么这个数应在2.5和3.5之间,包括2.5,不包括3.5,让2.5≤2x-1<3.5,解不等式即可;(2)举出反例说明即可,譬如稍微超过0.5的两个数相加;(3)x为整数,设这个整数为k,易得这个整数应在应在k-和k+之间,包括k-,不包括k+,求得整数k的值即可求得x的非负实数的值;3.(1)(50x+7000);(45x+7200)(2)解:当x=30时方案①:方案②:答:此时按方案①购买较为合算.(3)解:用方案①买20套西装送20条领带解析:(1)(50x+7000);(45x+7200)(2)解:当时方案①:方案②:答:此时按方案①购买较为合算.(3)解:用方案①买20套西装送20条领带,再用方案②买10条领带.总价钱为所以可以【解析】【解答】解:(1)按方案①购买,需付款:400×20+(x-20)×50=元;按方案②购买,需付款:400×90%×20+50×90%×x=(元)【分析】(1)根据题意分别列出代数式,并整理;(2)把x=30代入(1)中两个代数式,计算结果得结论;(3)抓住省钱想方案.两种方案都选用.4.(1)解:A家:700×6×92%=3864元,B家:500×6×95%+200×6×85%=3870元(2)解:A家:6x×90%=5.4x,B家:500×6×95%+100解析:(1)解:A家:700×6×92%=3864元,B家:500×6×95%+200×6×85%=3870元(2)解:A家:6x×90%=5.4x,B家:500×6×95%+1000×6×85%+(x-1500)×6×75%=4.5x+1200(3)解:①当他要批发不超过500千克苹果时,很明显在A家批发更优惠;当他要批发超过500千克但不超过1000千克苹果时,设批发x千克苹果,则A家费用=92%×6x=5.52x,B家费用=6×95%×500+6×85%×(x-500)=5.1x+300,A家费用-B家费用=0.42x-300,要使A店买的多反而便宜即是0.42x-300>0,解得:x>∴当x>时,A店买的多反而便宜;②当购买数量为1500以上~2500时,B家需要的总价=500×6×95%+1000×6×85%+(x-1500)×6×75%=4.5x+1200又总价=购买数量×单价+价格补贴∴价格补贴=1200元,当购买数量为2500以上部分时,B家需要的总价=500×6×95%+1000×6×85%+(2500-1500)×6×75%+(x-2500)×6×70%=4.2x+1950∴价格补贴=1950元.【解析】【分析】(1)A家批发需要费用:质量×单价×92%;B家批发需要费用:500×单价×95%+(700-500)×单价×85%;把相关数值代入求解即可;(2)根据“A家批发需要费用:质量×单价×92%;B家批发需要费用:500×单价×95%+1000×单价×85%+(x-1500)×单价×75%”;(3)①当他要批发超过500千克但不超过1000千克苹果时,设批发x千克苹果,则A家费用=92%×6x=5.52x,B家费用=6×95%×500+6×85%×(x-500)=5.1x+300,A家费用-B家费用=0.42x-300;即可举例说明A店买的多反而便宜;②分别求出B家批发各个价格所需要的费用的等式即可求解.5.(1)解:设1辆大货车和1辆小货车一次可以分别运货x吨、y吨,根据题意,得:{3x+2y=212x+4y=22,解得:{x=5y=3,答:1辆大货车和1辆小货车一次可以分别运货解析:(1)解:设1辆大货车和1辆小货车一次可以分别运货x吨、y吨,根据题意,得:,解得:,答:1辆大货车和1辆小货车一次可以分别运货5吨、3吨。(2)解:设安排m辆大货车,则小货车需要(10-m)辆,根据题意,得:5m+3(10-m)≥35,解得:m≥2.5,所以至少需要安排3辆大货车(3)解:设租大货车a辆,小货车b辆,由题意得5a+3b=23,∵a,b为非负整数,∴或,∴共有2中运输方案,方案1:租用4辆大货车,1辆小货车;方案2:租用1辆大货车,6辆小货车.方案1的租金:300×4+200=1400元,方案2的租金:300+200×6=1500元,∵1400<1500,∴最少租金为1400元。【解析】【分析】(1)设1辆大货车和1辆小货车一次可以分别运货x吨、y吨,根据3辆大货车吨数+2辆小货车吨数=21,2辆大货车吨数+4辆小货车吨数=22,列出方程组,求出x、y的值即可.(2)设安排m辆大货车,则小货车需要(10-m)辆,根据一次运货不低于35吨,列出不等式,求出解集即可.(3)设租大货车a辆,小货车b辆,可得5a+3b=23,求出其非负整数解,即得运输方案,然后分别求出其租金比较即可.6.(1)解:不可能选A年票.若选B年票,则;若选C年票,则;所以,若计划花费160元在该公园的门票上时,则选择购买C类年票进入公园的次数最多,为13次。(2)解:设超过x次时,购买A解析:(1)解:不可能选A年票.若选B年票,则;若选C年票,则;所以,若计划花费160元在该公园的门票上时,则选择购买C类年票进入公园的次数最多,为13次。(2)解:设超过x次时,购买A类年票比较合算,依题意得解得因此,一年中进入该公园超过30次时,购买A类年票比较合算。【解析】【分析】(1)分析题目中的数量关系,分3种情况讨论,利用有理数的运算解决问题;(2)根据题意,列出不等式组。注意要3种情况列出3个不等式,然后组成不等式组求解。7.(1)解:设篮球、排球单价分别为x元/个,y元/个;{2x+3y=2303x+2y=290,解得;(2)解:设购买排球a个,则购买篮球(120-a)个,a≤2(120-a)-解析:(1)解:设篮球、排球单价分别为x元/个,y元/个;,解得;(2)解:设购买排球a个,则购买篮球(120-a)个,a≤2(120-a)-10,解得,,∵a为整数,∴a的最大值是76,答:最多购买排球76个.【解析】【分析】(1)根据买2个篮球和3个排球共需230元,买3个篮球和2个排球共需290元可以列出相应的二元一次方程组,从而可以解答本题;(2)根据“排球的数量不多于篮球的数量的2倍少10”列出相应的一元一次不等式,从而可以求得最多购买排球多少个.8.(1)解:设平均每本科普书籍x元,平均绘本故事书籍y元,根据题意得,解得:{x=20y=30答:平均每本科普书籍20元,平均每本绘本故事书籍30元,(2)解:设购买科普书籍m本,解析:(1)解:设平均每本科普书籍x元,平均绘本故事书籍y元,根据题意得,解得:答:平均每本科普书籍20元,平均每本绘本故事书籍30元,(2)解:设购买科普书籍m本,绘本故事书籍(m-30)本,根据题意得,,解得:,,购买方案有三种:①购买科普书籍116本,绘本故事书籍86本;②购买科普书籍117本,绘本故事书籍87本;③购买科普书籍118本,绘本故事书籍88本.【解析】【分析】(1)设平均每本科普书籍x元,平均绘本故事书籍y元,根据“30本科普书籍和50本绘本故事书籍共需2100元;20本科普书籍比10本绘本故事书籍多100元“列出二元一次方程组解答便可;(2)设购买科普书籍m本,绘本故事书籍(m-30)本,根据“总费用不超过5000元”及“每所学校的科普书籍大于115本”列出不等式组求出m的取值范围,确定m的整数解便可得最后结论.9.(1)解:设新建一个地上停车位需x万元,新建一个地下停车位需y万元,由题意得:{2x+3y=1.74x+2y=1.4,解得{x=0.1y=0.5,故新建一个地上停车位需0解析:(1)解:设新建一个地上停车位需万元,新建一个地下停车位需万元,由题意得:,解得,故新建一个地上停车位需万元,新建一个地下停车位需万元.(2)设新建个地上停车位,由题意得:,解得,因为为整数,所以或,对应的或,故一共种建造方案。(3)当时,投资(万元),

当时,投资(万元),故当地上建个车位地下建个车位投资最少,金额为万元.【解析】【分析】(1)设新建一个地上停车位需x万元,新建一个地下停车位需y万元,根据“新建个地上停车位和个地下停车位共需万元,新建个地上停车位和个地下停车位共需万元”列出方程组,解出即可得出答案;(2)设新建地上停车位m个,则地下停车位(60-m)个,根据投资金额超过14万元而不超过15万元,可得出不等式组,解出即可得出答案;(3)将m=38和m=39分别求得投资金额,然后比较大小即可得到答案.10.(1)解:设改扩建一所A类和一所B类学校所需资金分别为x万元和y万元由题意得{2x+3y=78003x+y=5400,解得{x=1200y=1800,答:改扩建一所A类学校和解析:(1)解:设改扩建一所A类和一所B类学校所需资金分别为x万元和y万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)解:设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,由题意得:,解得,∴3≤a≤5,∵a取整数,∴a=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【解析】【分析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论