版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(完整版)数学初中苏教七年级下册期末专题资料试题(比较难)答案一、选择题1.下列运算正确的是(
)A.a3+a3=a6 B.(a﹣b)2=a2﹣b2 C.(﹣a3)2=a6 D.a12÷a2=a62.如图,属于同位角的是()A.与 B.与 C.与 D.与3.关于x的不等式x-a≥1.若x=1是不等式的解,x=-1不是不等式的解,则a的范围为()A.-2≤a≤0 B.-2<a<0 C.-2≤a<0 D.-2<a≤04.若的结果中不含项,则的值为()A. B. C. D.5.已知关于的二元一次方程组的解满足,则的取值范围是()A. B. C. D.6.下列命题:①同旁内角互补,两直线平行;②直角都相等;③直角三角形没有钝角;④若,则.其中,它们的逆命题是真命题的个数是()A.1 B.2 C.3 D.47.一列数,其中为不小于2的整数,则()A. B.2 C. D.8.一个多边形截去一个角后,形成的另一个多边形的内角和是,则原来多边形的边数是()A. B. C.或 D.或或二、填空题9.计算:_______________.10.命题“若a+b>0,则a>0,b>0”是_____命题(填“真”或“假”).11.若一个多边形的内角和与外角和的比为7:2,则这个多边形是_________边形;12.若a<b<0,则a2﹣b2___0.(填“>”,“<”或“=”)13.已知是二元一次方程组的解,则的值为________.14.为了便于游客领略“人从桥上过,如在景中游”的美好意境,某景区拟在如图所示的长方形水池上架设景观桥.若长方形水池的周长为,景观桥宽忽略不计,则小桥总长为________.15.若三角形两条边的长分别是3,5,第三条边的长是整数,则第三条边的长的最大值是______.16.如图,AE平分∠BAC,AD⊥BC于点D,若∠ABC=40°,∠C=68°,则∠DAE=___.17.计算:(1)-22+30-(2)(-2a)3-(-a)(3a)2(3)(2a-3b)2-4a(a-2b)(4)(m-2n+3)(m+2n-3).18.分解因式:(1)(2)19.解方程组(1)(2)20.定义:如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的“相伴方程”,例如:方程的解为,不等式组的解集为.因为,所以称方程为不等式组,的“相伴方程”.(1)下列方程是不等式组的“相伴方程”的是______;(填序号)①;②;③.(2)若关于的方程是不等式组的“相伴方程”,求的取值范围;(3)若方程,都是关于的不等式组的“相伴方程”,其中,求的取值范围.三、解答题21.如图,已知,(1)求证:(2)若平分,于点,,试求的度数22.每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:甲型机器乙型机器价格(万元/台)ab产量(吨/月)240180经调查:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元.(1)求a、b的值;(2)若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案?(3)在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为该公司设计一种最省钱的购买方案.23.对x,y定义一种新运算T,规定:T(x,y)=ax+2by﹣1(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=a•0+2b•1﹣1=2b﹣1.(1)已知T(1,﹣1)=﹣2,T(4,2)=3.①求a,b的值;②若关于m的不等式组恰好有2个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?24.如图,,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,.(1)=;(2)如图2,点C、D是、角平分线上的两点,且,求的度数;(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若,,且,求n的值.25.已知E、D分别在的边、上,C为平面内一点,、分别是、的平分线.(1)如图1,若点C在上,且,求证:;(2)如图2,若点C在的内部,且,请猜想、、之间的数量关系,并证明;(3)若点C在的外部,且,请根据图3、图4直接写出结果出、、之间的数量关系.【参考答案】一、选择题1.C解析:C【分析】根据整式的加法、完全平方公式、幂的乘方以及同底数幂的除法计算即可得出答案.【详解】A、原式,不符合题意;B、原式,不符合题意;C、原式,符合题意;D、原式,不符合题意,故选C.【点睛】本题考查了整式的运算,涉及合并同类项、完全平方公式、幂的乘方、同底数幂的除法等,熟练掌握相关运算法则是解决本题的关键.2.A解析:A【分析】根据同位角、内错角、同旁内角的意义进行判断即可.【详解】解:∠2与∠3是两条直线被第三条直线所截形成的同位角,因此选项A符合题意.∠1与∠4是对顶角,因此选项B不符合题意.∠1与∠3是内错角,因此选项C不符合题意.∠2与∠4同旁内角,因此选项D不符合题意.故选:A.【点睛】本题考查同位角、内错角、同旁内角,理解和掌握同位角、内错角、同旁内角的意义是正确判断的前提.3.D解析:D【分析】根据x=1是不等式x-a≥1的解,且x=-1不是这个不等式的解,列出不等式,求出解集,即可解答.【详解】解:∵x=1是不等式x-a≥1的解,∴1-a≥1,解得:a≤0,∵x=-1不是这个不等式的解,∴-1-a<1,解得:a>-2,∴-2<a≤0,故选:D.【点睛】本题考查了解一元一次不等式,不等式的解集,解决本题的关键是求不等式的解集.4.A解析:A【分析】利用多项式乘多项式运算法则将原式展开,然后合并同类项,使xy项系数为零即可解答.【详解】==,∵的结果中不含项,∴﹣m+4=0,解得:m=4,故选:A.【点睛】本题考查多项式乘多项式,熟练掌握多项式乘多项式的运算法则,会根据多项式积中不含某项的系数为零求解参数是解答的关键.5.A解析:A【分析】先把方程组的两个方程组相减得到,再根据得到,然后解出即可;【详解】把两式相减得到,∵,∴,∴;故答案选A.【点睛】本题主要考查了方程组与不等式的结合,准确计算是解题的关键.6.A解析:A【详解】解析:本题考查的逆命题及真命题的判定.①同旁内角互补,两直线平行的逆命题是:两直线平行,同旁内角互补,是真命题;②直角都相等的逆命题:相等的角是直角,是假命题;③直角三角形没有钝角的逆命题:没有钝角的三角形是直角三角形;可能是锐角三角形,所以是假命题;④若,则的逆命题:若,则;有可能是互为相反数,是假命题.故答案为A.7.B解析:B【分析】由题意易得,,,…..;由此可得规律为按照三个一循环进行下去,因此问题可求解.【详解】解:由为不小于2的整数可得:,,,…..;∴该列数的规律为按照三个一循环排列下去,∴,∴2;故选B.【点睛】本题主要考查数字规律,关键是由题意得到数字的一般规律,进而问题可求解.8.D解析:D【分析】首先求出截角后的多边形边数,然后再求原来的多边形边数.【详解】解:设截角后的多边形边数为n,则有:(n-2)×180°=1620°,解得:n=11,∴由下面的图可得原来的边数为10或11或12:故选D.【点睛】本题考查多边形的综合运用,熟练掌握多边形的内角和定理及多边形的剪拼是解题关键.二、填空题9.【分析】根据单项式乘以单项式的法则解答即可.【详解】解:.故答案为:.【点睛】本题考查了单项式的乘法,属于基础题型,熟练掌握单项式的乘法法则是解题的关键.10.假【分析】利用有理数的加法法则,举反例即可判断命题的正误.【详解】当a=2,b=﹣1,时,a+b﹥0成立,但a>0,b>0不成立,故此命题是假命题,故答案为:假.【点睛】本题主要考查命题的真假,解答的关键是熟悉判断命题真假的方法,即要判断命题的真假,需要看命题在其条件的约束下,结论是否一定成立.11.九【分析】根据多边形的内角和公式(n﹣2)•180°,外角和等于360°,列式求解即可.【详解】解:设多边形的边数是n,则:(n﹣2)•180°:360°=7:2,整理得:n﹣2=7,解得:n=9.故答案为九.【点睛】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理并列出比例式是解题的关键.12.>【分析】将a2-b2因式分解为(a+b)(a-b),再讨论正负,和积的正负,得出结果.【详解】解:∵a<b<0,∴a+b<0,a-b<0,∴a2-b2=(a+b)(a-b)>0.故答案为:>.【点睛】本题考查了因式分解,解题的关键是先把整式a2-b2因式分解,再利用a<b<0得到a-b和a+b的正负,利用负负得正判断大小.13.2【分析】根据题意,将代入二元一次方程组,得到关于m、n的二元一次方程组,求出后代入即可.【详解】将代入二元一次方程组,得,解得,,,,,故答案为:2.【点睛】本题主要考查了解二元一次方程组,算术平方根,解题关键是熟练掌握二元一次方程组的解法.14.150【分析】利用平移的性质直接得出答案即可.【详解】根据题意得出:小桥可以平移到矩形的边上,得出小桥的长等于矩形的长与宽的和,故小桥总长为:300÷2=150(m).故答案为:150.【点睛】本题考查平移,熟练掌握平移的性质是解题关键.15.7【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边;进行解答即可.【详解】解:∵5-3<第三边<3+5,即:2<第三边<8;所以最大整数是7,故答案为:7.解析:7【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边;进行解答即可.【详解】解:∵5-3<第三边<3+5,即:2<第三边<8;所以最大整数是7,故答案为:7.【点睛】本题考查了三角形的三边关系,解答此题的关键是根据三角形的特性进行分析、解答.16.14°【分析】根据三角形内角和定理求出∠BAC,根据角平分线的定义求出∠EAC,求出∠DAC,再求出答案即可.【详解】解:∵∠ABC=40°,∠C=68°,∴∠BAC=180°−∠ABC−解析:14°【分析】根据三角形内角和定理求出∠BAC,根据角平分线的定义求出∠EAC,求出∠DAC,再求出答案即可.【详解】解:∵∠ABC=40°,∠C=68°,∴∠BAC=180°−∠ABC−∠C=72°,∵AE平分∠BAC,∴∠EAC=∠BAC=36°,∵AD是△ABC的BC边上的高,∴∠ADC=90°,∵∠C=68°,∴∠DAC=90°−∠C=22°,∴∠DAE=∠EAC−∠DAC=36°−22°=14°,故答案是:14°.【点睛】本题考查了三角形内角和定理,角平分线的定义,三角形的高定义等知识点,能求出∠EAC的度数是解此题的关键.17.(1)-1;(2)-a3;(3)-4ab+9b2;(4)m2-4n2+12n-9.【详解】试题分析:本题主要考察整式的乘除,用相应的法则计算即可.(1)原式="4"+1+2=-1;(2解析:(1)-1;(2)-a3;(3)-4ab+9b2;(4)m2-4n2+12n-9.【详解】试题分析:本题主要考察整式的乘除,用相应的法则计算即可.(1)原式="4"+1+2=-1;(2)原式=-8a3+9a3=-a3;(3)原式=4a2-12ab+9b2-4a2+8ab=-4ab+9b2;(4)原式=m2-(2n-3)2=m2-4n2+12n-9.考点:整式的乘除.18.(1);(2)【分析】(1)先提公因式法,再用公式法分解因式即可;(2)直接用公式法分解因式即可【详解】(1)(2)【点睛】本题考查了提公因式法分解因式,公式法分解因式,熟练公式解析:(1);(2)【分析】(1)先提公因式法,再用公式法分解因式即可;(2)直接用公式法分解因式即可【详解】(1)(2)【点睛】本题考查了提公因式法分解因式,公式法分解因式,熟练公式是解题的关键.19.(1);(2).【分析】(1)利用代入消元法解二元一次方程组即可得;(2)利用加减消元法解二元一次方程组即可得.【详解】解:(1),将①代入②得:,解得,将代入①得:,则方程组的解解析:(1);(2).【分析】(1)利用代入消元法解二元一次方程组即可得;(2)利用加减消元法解二元一次方程组即可得.【详解】解:(1),将①代入②得:,解得,将代入①得:,则方程组的解为;(2),由③④得:,解得,将代入③得:,解得,则方程组的解为.【点睛】本题考查了利用消元法解二元一次方程组,熟练掌握消元法是解题关键.20.(1)①②;(2)取值范围为;(3)的取值范围为.【分析】(1)先求出不等式和每个方程的解,然后根据“相伴方程”的定义进行判断即可;(2)先求出不等式的解集,然后把k当做常数,求出方程的解,然解析:(1)①②;(2)取值范围为;(3)的取值范围为.【分析】(1)先求出不等式和每个方程的解,然后根据“相伴方程”的定义进行判断即可;(2)先求出不等式的解集,然后把k当做常数,求出方程的解,然后代入不等式组的解集中求解即可;(3)分别求出方程的解和不等式组的解集,然后根据“相伴方程”的定义求解即可.【详解】解:(1)解不等式,得,∴不等式的解集为,解方程①得;解方程②得解方程③得∴“相伴方程”是①②;(2)∵不等式组为解得,∵方程为,解得,根据题意可得,,解得:,故取值范围为.(3)∵方程为,,解得:,.∵不等式组为当时,不等式组为此时不等式组解集为,不符合题意,舍;当时,不等式组解集为,∴根据题意可得解得,故的取值范围为.【点睛】本题主要考查了解一元一次方程和一元一次不等式组,解题的关键在于能够熟练掌握相关知识进行求解.三、解答题21.(1)详见解析;(2)58°【分析】(1)由平行线的判定定理进行证明,即可得到结论成立;(2)由角平分线性质和平行线的性质,求出∠2的度数,然后即可求出的度数.【详解】(1)证明:∵∠1=解析:(1)详见解析;(2)58°【分析】(1)由平行线的判定定理进行证明,即可得到结论成立;(2)由角平分线性质和平行线的性质,求出∠2的度数,然后即可求出的度数.【详解】(1)证明:∵∠1=∠BDC∴AB//CD(同位角相等,两直线平行)∴∠2=∠ADC(两直线平行,内错角相等)∵∠2+∠3=180°∴∠ADC+∠3=180°(等量代换)∴AD//CE(同旁内角互补,两直线平行)(2)解:∵∠1=∠BDC,∠1=64°∴∠BDC=64°∵DA平分∠BDC∴∠ADC=∠BDC=32°(角平分线定义)∴∠2=∠ADC=32°(已证)又∵CE⊥AE∴∠AEC=90°(垂直定义)∵AD//CE(已证)∴∠DAF=∠AEC=90°(两直线平行,同位角相等)∴∠FAB=∠DAF-∠2=90°-32°=58°.【点睛】本题考查了平行线的判定和性质,角平分线的定义,以及余角的计算,解题的关键是熟练掌握所学的知识进行解题.22.(1);(2)有4种方案:3台甲种机器,7台乙种机器;2台甲种机器,8台乙种机器;1台甲种机器,9台乙种机器;10台乙种机器.(3)最省钱的方案是购买2台甲种机器,8台乙解析:(1);(2)有4种方案:3台甲种机器,7台乙种机器;2台甲种机器,8台乙种机器;1台甲种机器,9台乙种机器;10台乙种机器.(3)最省钱的方案是购买2台甲种机器,8台乙种机器.【分析】(1)根据购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元这一条件建立一元二次方程组求解即可,(2)设买了x台甲种机器,根据该公司购买新机器的资金不超过216万元,建立一次不等式求解即可,(3)将两种机器生产的产量相加,使总产量不低于1890吨,求出x的取值范围,再分别求出对应的成本即可解题.【详解】(1)解:由题意得,解得,;(2)解:设买了x台甲种机器由题意得:30+18(10-x)≤216解得:x≤3∵x为非负整数∴x=0、1、2、3∴有4种方案:3台甲种机器,7台乙种机器;2台甲种机器,8台乙种机器;1台甲种机器,9台乙种机器;10台乙种机器.(3)解:由题意得:240+180(10-x)≥1890解得:x≥1.5∴1.5≤x≤3∴整数x=2或3当x=2时购买费用=30×2+18×8=204(元)当x=3时购买费用=30×3+18×7=216(元)∴最省钱的方案是购买2台甲种机器,8台乙种机器.【点睛】本题考查了利润的实际应用,二元一次方程租的实际应用,一元一次不等式的实际应用,难度较大,认真审题,找到等量关系和不等关系并建立方程组和不等式组是解题关键.23.(1)①a=1,b=3;②-2≤p<-;(2)a=2b.【分析】(1)①按题意的运算可得方程组,即可求得a、b的值;②按题意的运算可得不等式组,即可求得p的取值范围;(2)由题意可得ax+2解析:(1)①a=1,b=3;②-2≤p<-;(2)a=2b.【分析】(1)①按题意的运算可得方程组,即可求得a、b的值;②按题意的运算可得不等式组,即可求得p的取值范围;(2)由题意可得ax+2by-1=ay+2bx-1,从而可得a="2b";【详解】(1)①由题意可得,解得;②由题意得,解得,因为原不等式组有2个整数解,所以,所以;(2)T(x,y)="ax+2by-1,"T(y,x)="ay+2bx-1",所以ax+2by-1=ay+2bx-1,所以(a-2ba)x-(a-2b)y=0,(a-2b)(x-y)=0,所以a=2b24.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,,然后根据三角形外角的性质解答即可;(3)设BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,从而,又∠FKN=∠F+∠FAK,得,即可求n.【详解】解:(1)如图:过O作OP//MN,∵MN//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2)分别延长AC、CD交GH于点E、F,∵AC平分且,∴,又∵MN//GH,∴;∵,∵BD平分,∴,又∵∴;∴;(3)设FB交MN于K,∵,则;∴∵,∴,,在△FAK中,,∴,∴.经检验:是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.25.(1)证明见解析;(2)∠CDB+∠AEC=2∠DCE;(3)图3中∠CDB=∠AEC+2∠DCE,图4中∠AEC=∠CDB+2∠DCE.【分析】(1)依据DE、DF分别是∠CDO、∠CDB的平解析:(1)证明见解析;(2)∠CDB+∠AEC=2∠DCE;(3)图3中∠CDB=∠AEC+2∠DCE,图4中∠AEC=∠CDB+2∠DCE.【分析】(1)依据DE、DF分别是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天津广播影视职业学院《林产化学工艺学》2023-2024学年第二学期期末试卷
- 宁夏幼儿师范高等专科学校《婴幼儿常见疾病与保健》2023-2024学年第二学期期末试卷
- 无锡科技职业学院《单片机与接口技术》2023-2024学年第二学期期末试卷
- 河北石油职业技术学院《马克思主义与社会科学方法论》2023-2024学年第二学期期末试卷
- 安徽工业职业技术学院《影视后期设计》2023-2024学年第二学期期末试卷
- 黑龙江艺术职业学院《建筑信息建模(BM)技术应用》2023-2024学年第二学期期末试卷
- 黄淮学院《汽车检测与诊断》2023-2024学年第二学期期末试卷
- 北京外国语大学《分析化学新技术》2023-2024学年第二学期期末试卷
- 中建交通三公司2026届秋季校园招聘备考题库及答案详解(易错题)
- 仁怀市消防员考试题库2025
- 2026江苏省人民医院消化内科工勤人员招聘2人考试备考题库及答案解析
- 2025年浙江省嘉兴市嘉善县保安员考试真题附答案解析
- AFP急性弛缓性麻痹培训课件
- GDPR框架下跨境医疗数据治理策略
- 2026年及未来5年市场数据中国滑板车行业发展前景及投资战略规划研究报告
- 糖尿病足溃疡VSD治疗足部皮肤护理方案
- 浅谈盲人按摩行业的现状、困境及出路
- 邮政营业与投递岗位履职培训
- 2025煤矿事故一览表
- 2025版中国经皮冠状动脉介入治疗指南课件
- 解读-2025年版《普通高中课程标准》化学解读
评论
0/150
提交评论