广西北海市2026届数学高二第一学期期末统考模拟试题含解析_第1页
广西北海市2026届数学高二第一学期期末统考模拟试题含解析_第2页
广西北海市2026届数学高二第一学期期末统考模拟试题含解析_第3页
广西北海市2026届数学高二第一学期期末统考模拟试题含解析_第4页
广西北海市2026届数学高二第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西北海市2026届数学高二第一学期期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆,则圆C关于直线对称的圆的方程为()A. B.C. D.2.若直线的斜率为,则的倾斜角为()A. B.C. D.3.某班新学期开学统计新冠疫苗接种情况,已知该班有学生45人,其中未完成疫苗接种的有5人,则该班同学的疫苗接种完成率为()A. B.C. D.4.若椭圆与直线交于两点,过原点与线段AB中点的直线的斜率为,则A. B.C. D.25.某学校的校车在早上6:30,6:45,7:00到达某站点,小明在早上6:40至7:10之间到达站点,且到达的时刻是随机的,则他等车时间不超过5分钟的概率是()A. B.C. D.6.已知函数有两个极值点m,n,且,则的最大值为()A. B.C. D.7.已知为原点,点,以为直径的圆的方程为()A. B.C. D.8.某种疾病的患病率为0.5%,通过验血诊断该病的误诊率为2%,即非患者中有2%的人验血结果为阳性,患者中有2%的人验血结果为阴性,随机抽取一人进行验血,则其验血结果为阳性的概率为()A.0.0689 B.0.049C.0.0248 D.0.029.已知函数,那么的值为()A. B.C. D.10.在区间内随机地取出两个数,则两数之和小于的概率是()A. B.C. D.11.随机地向两个标号分别为1与2的格子涂色,涂上红色或绿色,在已知其中一个格子颜色为红色条件下另一个格子颜色也为红色的概率为()A. B.C. D.12.如图甲是第七届国际数学家大会(简称ICME—7)的会徽图案,其主体图案是由图乙的一连串直角三角形演化而成的.已知,,,,为直角顶点,设这些直角三角形的周长从小到大组成的数列为,令,为数列的前项和,则()A.8 B.9C.10 D.11二、填空题:本题共4小题,每小题5分,共20分。13.双曲线的右顶点为A,右焦点为F,过点F平行于双曲线的一条渐近线的直线与双曲线交于点B,则的面积为__________14.已知函数是定义域上的单调递增函数,是的导数且为定义域上的单调递减函数,请写出一个满足条件的函数的解析式___________15.已知双曲线的两个焦点分别为,,为双曲线上一点,且,则的值为________16.已知满足约束条件,则的最小值为___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆C经过,,三点,并且与y轴交于P,Q两点,求线段PQ的长度.18.(12分)2020年3月20日,中共中央、国务院印发了《关于全面加强新时代大中小学劳动教育的意见》(以下简称《意见》),《意见》中确定了劳动教育内容要求,要求普通高中要注重围绕丰富职业体验,开展服务性劳动、参加生产劳动,使学生熟练掌握一定劳动技能,理解劳动创造价值,具有劳动自立意识和主动服务他人、服务社会的情怀.我市某中学鼓励学生暑假期间多参加社会公益劳动,在实践中让学生利用所学知识技能,服务他人和社会,强化社会责任感,为了调查学生参加公益劳动的情况,学校从全体学生中随机抽取100名学生,经统计得到他们参加公益劳动的总时间均在15~65小时内,其数据分组依次为:,,,,,得到频率分布直方图如图所示,其中(1)求,的值,估计这100名学生参加公益劳动的总时间的平均数(同一组中的每一个数据可用该组区间的中点值代替);(2)学校要在参加公益劳动总时间在、这两组的学生中用分层抽样的方法选取5人进行感受交流,再从这5人中随机抽取2人进行感受分享,求这2人来自不同组的概率19.(12分)点与定点的距离和它到直线:的距离的比是常数.(1)求动点的轨迹的方程;(2)点在(1)中轨迹上运动轴,为垂足,点满足,求点轨迹方程.20.(12分)已知平面内两点,,动点P满足(1)求动点P的轨迹方程;(2)过定点的直线l交动点P的轨迹于不同的两点M,N,点M关于y轴对称点为,求证直线过定点,并求出定点坐标21.(12分)人类社会正进入数字时代,网络成为了必不可少的工具,智能手机也给我们的生活带来了许多方便.但是这些方便、时尚的手机,却也让你的眼睛离健康越来越远.为了了解手机对视力的影响程度,某研究小组在经常使用手机的中学生中进行了随机调查,并对结果进行了换算,统计了中学生一个月中平均每天使用手机的时间x(小时)和视力损伤指数的数据如下表:平均每天使用手机的时间x(小时)1234567视力损伤指数y25812151923(1)根据表中数据,求y关于x的线性回归方程.(2)该小组研究得知:视力的下降值t与视力损伤指数y满足函数关系式,如果小明在一个月中平均每天使用9个小时手机,根据(1)中所建立的回归方程估计小明视力的下降值(结果保留一位小数).参考公式及数据:,..22.(10分)已知椭圆C:的长轴长为4,离心率e是方程的一根(1)求椭圆C的方程;(2)已知O是坐标原点,斜率为k的直线l经过点,已知直线l与椭圆C相交于点A,B,求面积的最大值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求得圆的圆心关于直线的对称点,由此求得对称圆的方程.【详解】设圆的圆心关于直线的对称点为,则,所以对称圆的方程为.故选:B2、C【解析】设直线l倾斜角为,根据题意得到,即可求解.【详解】设直线l的倾斜角为,因为直线的斜率是,可得,又因为,所以,即直线的倾斜角为.故选:C.3、D【解析】利用古典概型的概率求解.【详解】该班同学的疫苗接种完成率为故选:D4、D【解析】细查题意,把代入椭圆方程,得,整理得出,设出点的坐标,由根与系数的关系可以推出线段的中点坐标,再由过原点与线段的中点的直线的斜率为,进而可推导出的值.【详解】联立椭圆方程与直线方程,可得,整理得,设,则,从而线段的中点的横坐标为,纵坐标,因为过原点与线段中点的直线的斜率为,所以,所以,故选D.【点睛】该题是一道关于直线与椭圆的综合性题目,涉及到的知识点有直线与椭圆相交时对应的解题策略,中点坐标公式,斜率坐标公式,属于简单题目.5、B【解析】求出小明等车时间不超过5分钟能乘上车的时长,即可计算出概率.【详解】6:40至7:10共30分钟,小明同学等车时间不超过5分钟能乘上车只能是6:40至6:45和6:55至7:00到站,共10分钟,所以所求概率为.故选:B6、C【解析】对求导得,得到m,n是两个根,由根与系数的关系可得m,n的关系,然后构造函数,利用导数求单调性,进而得最值.【详解】由得:m,n是两个根,由根与系数的关系得:,故,令记,则,故在上单调递减.故选:C7、A【解析】求圆的圆心和半径,根据圆的标准方程即可求解﹒【详解】由题知圆心为,半径,∴圆方程为﹒故选:A﹒8、C【解析】根据全概率公式即可求出【详解】随机抽取一人进行验血,则其验血结果为阳性的概率为0.0248故选:C9、D【解析】直接求导,代入计算即可.【详解】,故.故选:D.10、C【解析】利用几何概型的面积型,确定两数之和小于的区域,进而根据面积比求概率.【详解】由题意知:若两个数分别为,则,如上图示,阴影部分即为,∴两数之和小于的概率.故选:C11、D【解析】根据古典概型的概率公式即可得出答案.【详解】在已知其中一个格子颜色为红色条件下另一个格子颜色有红色与绿色两种情况,其中一个格子颜色为红色条件下另一个格子颜色也为红色的情况有1种,所以在已知其中一个格子颜色为红色条件下另一个格子颜色也为红色的概率为.故选:D.12、B【解析】由题意可得的边长,进而可得周长及,进而可得,可得解.【详解】由,可得,,,,所以,,所以前项和,所以,故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由平行线的性质求出斜率,由点斜式求出直线方程,然后求出交点坐标,由三角形面积公式可得结果.【详解】双曲线的右顶点,右焦点,,所以渐近线方程为,不妨设直线FB的方程为,将代入双曲线方程整理,得,解得,,所以,所以故答案为:.14、(答案不唯一)【解析】由题意可得0,结合在定义域上为减函数可取.【详解】因为在定义域为单调增函数所以在定义域上0,又因为在定义域上为减函数,且大于等于0.所以可取(),(),满足条件所以可为().故答案为:(答案不唯一).15、2【解析】求得双曲线的a,b,c,不妨设P为双曲线右支上的点,|PF1|=m,|PF2|=n,利用双曲线的定义、余弦定理列出方程组,求出mn即可.【详解】双曲线的a=2,b=1,c=,不妨设P为双曲线右支上的点,|PF1|=m,|PF2|=n,则,①由余弦定理可得,②联立①②可得故答案为:216、【解析】根据题意,作出可行域,进而根据几何意义求解即可.【详解】解:作出可行域如图,将变形为,所以根据几何意义,当直线过点时,有最小值,所以联立方程得,所以的最小值为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解析】设圆的方程为,代入点的坐标,求出,,,令,即可得出结论【详解】解:设圆的方程为,则,,,,,即,令,可得,解得、,所以、,或、,,18、(1),;平均数为40.2;(2)【解析】(1)根据矩形面积和为1,求的值,再根据频率分布直方图求平均数;(2)首先利用分层抽样,在中抽取3人,在中抽取2人,再编号,列举基本事件,求概率,或者利用组合公式,求古典概型概率.详解】(1)依题意,,故又因为,所以,所求平均数为(小时)所以估计这100名学生参加公益劳动的总时间的平均数为40.2(2)由频率分布直方图可知,参加公益劳动总时间在和的学生比例为又由分层抽样的方法从参加公益劳动总时间在和的学生中随机抽取5人,则在中抽取3人,分别记为,,,在中抽取2人,分别记为,,则从5人中随机抽取2人基本事件有,,,,,,,,,这2人来自不同组的基本事件有:,,,,,,共6个,所以所求的概率解法二:由频率分布直方图可知,参加公益劳动总时间在和的学生比例为又由分层抽样的方法从参加公益劳动总时间在和的学生中随机抽取5人,则在中抽取3人,在中抽取2人,则从5人中随机抽取2人的基本事件总数为这2人来自不同组的基本事件数为所以所求的概率19、(1);(2)【解析】(1)根据题意用表示出与,再代入,再化简即可得出答案。(2)设,利用表示出点,再将点代入椭圆,化简即可得出答案。【详解】(1)由题意知,所以化简得:(2)设,因为,则将代入椭圆得化简得【点睛】本题考查轨迹方程,一般求某点的轨迹方程,只需要设该点为,利用所给条件建立的关系式,化简即可。属于基础题。20、(1)(2)证明见解析,定点坐标为【解析】(1)直接由斜率关系计算得到;(2)设出直线,联立椭圆方程,韦达定理求出,再结合三点共线,求出参数,得到过定点.小问1详解】设动点,由已知有,整理得,所以动点的轨迹方程为;【小问2详解】由已知条件可知直线和直线斜率一定存在,设直线方程为,,,则,由,可得,则,即为,,,因为直线过定点,所以三点共线,即,即,即,即,即得,整理,得,满足,则直线方程为,恒过定点.【点睛】本题关键在于设出带有两个参数的直线的方程,联立椭圆方程后,利用题干中的条件,解出一个参数或得到两个参数之间的关系,即可求出定点.21、(1)(2)0.3【解析】(1)由表格数据及参考公式即可求解;(2)由(1)中线性回归方程计算小明的视力损伤指数,再将代入视力的下降值t与视力损伤指数y满足的函数关系

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论