成都八中八年级上册期末数学模拟试卷及答案_第1页
成都八中八年级上册期末数学模拟试卷及答案_第2页
成都八中八年级上册期末数学模拟试卷及答案_第3页
成都八中八年级上册期末数学模拟试卷及答案_第4页
成都八中八年级上册期末数学模拟试卷及答案_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

成都八中八年级上册期末数学模拟试卷及答案一、选择题1.若分式方程产生增根,则()A. B. C. D.12.化简分式的结果是()A. B. C. D.3.如图,的外角的平分线相交于点,于,于,下列结论:(1);(2)点在的平分线上;(3),其中正确的有()A.0个 B.1个 C.2个 D.3个4.把边长相等的正五边形ABCDE和正方形ABFG,按照如图所示的方式叠合在一起,连结AD,则∠DAG=()A.18° B.20° C.28° D.30°5.在四边形ABCD中,若∠A与∠C之和等于四边形外角和的一半,∠B比∠D大15°,则∠B的度数等于()A.150° B.97.5° C.82.5° D.67.5°6.若中刚好有,则称此三角形为“可爱三角形”,并且称作“可爱角”.现有一个“可爱且等腰的三角形”,那么聪明的同学们知道这个三角形的“可爱角”应该是().A.或 B.或 C.或 D.或或7.如图,等边的边长为,是边上的中线,是上的动点,是边上一点,若,则的最小值为()A. B. C. D.8.如图,已知AB=AD,AC=AE,若要判定△ABC≌△ADE,则下列添加的条件中正确的是()A.∠1=∠DAC B.∠B=∠D C.∠1=∠2 D.∠C=∠E9.下列图案中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个10.如图,在△ABC中,AB=AC,BO、CO分别平分∠ABC、∠ACB,DE经过点O,且DE∥BC,DE分别交AB、AC于D、E,则图中等腰三角形的个数为()A.2 B.3 C.4 D.5二、填空题11.已知的值为4,若分式中的、均扩大2倍,则的值为__________.12.若,则分式的值为_____.13.如图,在中,AB=AC,AB的垂直平分线交AB于点D,交AC于点E,且与的周长分别是16和10,则AB的长为_______14.如图,已知,则________________15.已知x+y=8,xy=15,则的值为__________.16.已知一列分式,,,,,,…,观察其规律,则第n个分式是_______.17.若△ABC中,AD是BC边上的高线,AE平分∠BAC,∠B=40°,∠C=50°,则∠EAD=_____°.18.如图,,,.给出下列结论:①;②;③;④.其中正确结论的序号是__________.19.如图所示,在中,,平分,于,,则________.20.若分式方程的解为正数,则m的取值范围是__________.三、解答题21.如图,,和分别是的高、角平分线和中线.(1)对于下面的五个结论:①;②;③;④;⑤.其中正确的是(只填序号)(2)若,,求的度数.22.已知:,,求下列代数式的值:(1);(2).23.先化简,再求值:,其中a=-1,b=1.24.先化简,再求值:,其中,.25.先化简,再求值:(a+2)2-(a+1)(a-1),其中a=.26.如图,如果AD∥BC,∠B=∠C,那么AD是∠EAC的平分线吗?请说明你判别的理由.27.如图,AC平分∠BCD,AB=AD,AE⊥BC于E,AF⊥CD于F.(1)若∠ABE=60°,求∠CDA的度数;(2)若AE=2,BE=1,CD=4.求四边形AECD的面积.28.(1)如图,中,点D、E在边上,平分,,,,求的度数;(2)如图,若把(1)中的条件“”变成“F为延长线上一点,”,其它条件不变,求的度数;(3)若把(1)中的条件“”变成“F为延长线上一点,”,其它条件不变,请画出相应的图形,并求出的度数;(4)结合上述三个问题的解决过程,你能得到什么结论?29.已知,,点在上,点在上.(1)如图1中,的数量关系为:________;(不需要证明)如图2中,的数量关系为:__________;(不需要证明)(2)如图3中,平分,平分,且,求的度数;(3)如图4中,,平分,平分,且,则的大小是否发生变化,若变化,请说明理由,若不变化,求出的度数.30.如图,△ACF≌△DBE,其中点A、B、C、D在一条直线上.(1)若BE⊥AD,∠F=62°,求∠A的大小.(2)若AD=9cm,BC=5cm,求AB的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】方程两边都乘以最简公分母x+3化分式方程为整式方程,然后把增根代入进行计算即可求出m的值.【详解】解:方程两边都乘以x+3,得∵方程有增根,∴x+3=0,x=-3,将x=-3代入x-1=m,得m=-4,故选:B.【点睛】本题考查了分式方程的增根的问题,增根就是使分式方程的最简公分母等于0的未知数的值,把分式方程化为整式方程代入求解即可.2.B解析:B【解析】【分析】原式分子分母提取公因式变形后,约分即可得到结果.【详解】解:原式==.所以答案选B.【点睛】此题考查了约分,找出分子分母的公因式是解本题的关键.3.C解析:C【解析】【分析】过点P作PG⊥AB,由角平分线的性质定理,得到,可判断(1)(2)正确;由,,得到,可判断(3)错误;即可得到答案.【详解】解:过点P作PG⊥AB,如图:∵AP平分∠CAB,BP平分∠DBA,,,PG⊥AB,∴;故(1)正确;∴点在的平分线上;故(2)正确;∵,又,∴;故(3)错误;∴正确的选项有2个;故选:C.【点睛】本题考查了角平分线的判定定理和性质定理,解题的关键是熟练掌握角平分线的判定和性质进行解题.4.A解析:A【解析】【分析】利用多边形内角和公式求得∠E的度数,在等腰三角形AED中可求得∠EAD的度数,进而求得∠BAD的度数,再利用正方形的内角得出∠BAG=90°,进而得出∠DAG的度数.【详解】解:∵正五边形ABCDE的内角和为(5﹣2)×180°=540°,∴∠E=∠BAE=×540°=108°,又∵EA=ED,∴∠EAD=×(180°﹣108°)=36°,∴∠BAD=∠BAE﹣∠EAD=72°,∵正方形GABF的内角∠BAG=90°,∴∠DAG=90°﹣72°=18°,故选:A.【点睛】本题考查正多边形的内角和,掌握多边形内角和公式是解题的关键.5.B解析:B【解析】【分析】根据∠A与∠C之和等于四边形外角和的一半,四边形的外角和为360°,得到∠A+∠C=180°,根据四边形的内角和为360°∠B+∠D=360°-(∠A+∠C)=180°①,根据∠B比∠D大15°,得到∠B-∠D=15°②,所以①+②得:2∠B=195°,所以∠B=97.5°.【详解】解:∵∠A与∠C之和等于四边形外角和的一半,四边形的外角和为360°,∴∠A+∠C=180°,∴∠B+∠D=360°﹣(∠A+∠C)=180°①,∵∠B比∠D大15°,∴∠B﹣∠D=15°②,①+②得:2∠B=195°,∴∠B=97.5°.故选:B.【点睛】本题考查了多边形的内角与外角,解决本题的关键是熟记四边形的内角和与外角和.6.C解析:C【解析】【分析】根据三角形内角和为180°且等腰三角形的两个底角相等,再结合题中一个角是另一个角的2倍即可求解.【详解】解:由题意可知:设这个等腰三角形为△ABC,且,情况一:当∠B是底角时,则另一底角为∠A,且∠A=∠B=2∠C,由三角形内角和为180°可知:∠A+∠B+∠C=180°,∴5∠C=180°,∴∠C=36°,∠A=∠B=72°,此时可爱角为∠A=72°,情况二:当∠C是底角,则另一底角为∠A,且∠B=2∠A=2∠C,由三角形内角和为180°可知:∠A+∠B+∠C=180°,∴4∠C=180°,即∠C=45°,此时可爱角为∠A=45°,故选:C.【点睛】本题借助三角形内角和考查了新定义题型,关键是读懂题目意思,熟练掌握等腰三角形的两底角相等及三角形内角和为180°.7.B解析:B【解析】【分析】连接,与交于点,就是的最小值,根据等边三角形的性质求解即可.【详解】解:连接,与交于点,是边上的中线,,是的垂直平分线,、关于对称,就是的最小值,等边的边长为,∴,,,,,是的垂直平分线,∵是等边三角形,易得,,的最小值为,故选:B.【点睛】本题考查等边三角形的性质、轴对称-路径最短等内容,明确当B,M,E三点共线时最短是解题的关键.8.C解析:C【解析】【分析】根据题目中给出的条件,,根据全等三角形的判定定理判定即可.【详解】解:,,则可通过,得到,利用SAS证明△ABC≌△ADE,故选:C.【点睛】此题主要考查了全等三角形的判定,关键是要熟记判定定理:,,,.9.B解析:B【解析】【分析】根据轴对称图形的概念对各图形分析判断即可得解.【详解】第一个图形不是轴对称图形,第二个图形不是轴对称图形,第三个图形是轴对称图形,第四个图形是轴对称图形,综上所述,是轴对称图形的有2个.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.D解析:D【解析】【分析】根据等腰三角形的判定定理,即可得到答案.【详解】∵在△ABC中,AB=AC,∴△ABC是等腰三角形,∠ABC=∠ACB,∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴∠ADE=∠AED,∴△ADE是等腰三角形,∵BO、CO分别平分∠ABC、∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC=∠OCB,∴△OBC是等腰三角形,∵DE∥BC,BO、CO分别平分∠ABC、∠ACB,∴∠DBO=∠OBC=∠DOB,∠ECO=∠OCB=∠EOC,∴△DBO,△ECO是等腰三角形,∴图中由5个等腰三角形,故选D.【点睛】本题主要考查等腰三角形的判定定理,熟悉等腰三角形的判断定理和“双平等腰”模型,是解题的关键.二、填空题11.8【解析】【分析】首先把分式中的x、y均扩大2倍,然后约分化简,进而可得答案.【详解】解:分式中的x、y均扩大2倍得:=2×4=8,故答案为:8.【点睛】本题考查了分式的基本性质,关解析:8【解析】【分析】首先把分式中的x、y均扩大2倍,然后约分化简,进而可得答案.【详解】解:分式中的x、y均扩大2倍得:=2×4=8,故答案为:8.【点睛】本题考查了分式的基本性质,关键是掌握分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.12.【解析】【分析】可根据设a=7k,b=8k(k≠0),然后代入分式计算即可.【详解】解:∵,∴设a=7k,b=8k(k≠0),则有:==.故答案为:.【点睛】本题考查分式的值,属解析:【解析】【分析】可根据设a=7k,b=8k(k≠0),然后代入分式计算即可.【详解】解:∵,∴设a=7k,b=8k(k≠0),则有:==.故答案为:.【点睛】本题考查分式的值,属于基础知识的考查,比较简单.13.6【解析】【分析】根据线段的垂直平分线的性质得到,根据三角形的周长公式计算即可.【详解】解:是的垂直平分线,,的周长是10,,即,的周长是16,,.故答案为:6.【点睛】解析:6【解析】【分析】根据线段的垂直平分线的性质得到,根据三角形的周长公式计算即可.【详解】解:是的垂直平分线,,的周长是10,,即,的周长是16,,.故答案为:6.【点睛】本题考查了等腰三角形的性质,线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14.180【解析】【分析】根据平行线的性质,得到,根据平角的性质得到,,然后根据三角形内角和定理即可求解.【详解】∵∴∵,又∵∴∴故答案为180.【点睛】本题考查了平行线的性质解析:180【解析】【分析】根据平行线的性质,得到,根据平角的性质得到,,然后根据三角形内角和定理即可求解.【详解】∵∴∵,又∵∴∴故答案为180.【点睛】本题考查了平行线的性质—两直线平行同位角相等,三角形的内角和,解题过程中注意等量代换是本题的关键.15.120【解析】【分析】原式提出公因式xy后代入前面式子的值计算即可.【详解】解:原式=xy(x+y)=15×8=120.故答案为:120.【点睛】本题考查了因式分解的应用,正确的将原解析:120【解析】【分析】原式提出公因式xy后代入前面式子的值计算即可.【详解】解:原式=xy(x+y)=15×8=120.故答案为:120.【点睛】本题考查了因式分解的应用,正确的将原式因式分解,变形成用已知式子表示的式子是解决此题的关键.16.【解析】【分析】分别找出符号,分母,分子的规律,从而得出第n个分式的式子.【详解】观察发现符号规律为:正负间或出现,故第n项的符号为:分母规律为:y的次序依次增加2、3、4等等,故第n项解析:【解析】【分析】分别找出符号,分母,分子的规律,从而得出第n个分式的式子.【详解】观察发现符号规律为:正负间或出现,故第n项的符号为:分母规律为:y的次序依次增加2、3、4等等,故第n项为:=分子规律为:x的次数为对应项的平方加1,故第n项为:故答案为:.【点睛】本题考查找寻规律,需要注意,除了寻找数字规律外,我们还要寻找符号规律.17.5【解析】【分析】由三角形的高得出,求出,由三角形内角和定理求出,由角平分线求出,即可得出的度数.【详解】解:中,是边上的高,,,,平分,,.故答案为:5.【点睛】本题解析:5【解析】【分析】由三角形的高得出,求出,由三角形内角和定理求出,由角平分线求出,即可得出的度数.【详解】解:中,是边上的高,,,,平分,,.故答案为:5.【点睛】本题考查了三角形内角和定理、角平分线的定义、角的和差计算;熟练掌握三角形内角和定理,并能进行推理计算是解决问题的关键.18.①②③【解析】【分析】根据三角形的内角和定理求出∠EAB=∠FAC,即可判断①;根据AAS证△EAB≌△FAC,即可判断②;推出AC=AB,根据ASA即可证出③;不能推出CD和DN所在的三角形解析:①②③【解析】【分析】根据三角形的内角和定理求出∠EAB=∠FAC,即可判断①;根据AAS证△EAB≌△FAC,即可判断②;推出AC=AB,根据ASA即可证出③;不能推出CD和DN所在的三角形全等,也不能用其它方法证出CD=DN.【详解】∵∠E=∠F=90∘,∠B=∠C,∵∠E+∠B+∠EAB=180∘,∠F+∠C+∠FAC=180∘,∴∠EAB=∠FAC,∴∠EAB−CAB=∠FAC−∠CAB,即∠1=∠2,∴①正确;在△EAB和△FAC中∴△EAB≌△FAC,∴BE=CF,AC=AB,∴②正确;在△ACN和△ABM中∴△ACN≌△ABM,∴③正确;∵根据已知不能推出CD=DN,∴④错误;【点睛】本题考查全等三角形的判定和性质,解题关键在于根据全等的性质对选项进行判断.19.【解析】【分析】由角平分线的性质定理,得到CD=DE,然后等量代换即可得到答案.【详解】解:∵在中,,∴DC⊥AC,∵平分,,∴CD=DE,∴;故答案为:8cm;【点睛】本题解析:【解析】【分析】由角平分线的性质定理,得到CD=DE,然后等量代换即可得到答案.【详解】解:∵在中,,∴DC⊥AC,∵平分,,∴CD=DE,∴;故答案为:8cm;【点睛】本题考查了角平分线的性质定理,解题的关键是熟练掌握角平分线的性质定理,正确得到CD=DE.20.m>1且m≠3【解析】【分析】方程两边同乘以x-1,化为整数方程,求得x,再列不等式得出m的取值范围.【详解】解:方程两边同乘以x-1,得,m-3=2(x-1),解得,∵分式方程解为正解析:m>1且m≠3【解析】【分析】方程两边同乘以x-1,化为整数方程,求得x,再列不等式得出m的取值范围.【详解】解:方程两边同乘以x-1,得,m-3=2(x-1),解得,∵分式方程解为正数∴且x-1≠0,即m>1且,∴m>1且m≠3,故答案为:m>1且m≠3.【点睛】本题考查了分式方程的解,要注意分式的分母不为0的条件,此题是一道易错题,有点难度.三、解答题21.解:(1)①②④⑤;(2)【解析】【分析】(1)根据三角形的高、角平分线和中线的定义即可得到AD⊥BC,∠CAE=∠CAB,BC=2BF,S△AFB=S△AFC.(2)先根据三角形内角和得到∠CAB=180°-∠ABC-∠C=84°,再根据角平分线与高线的定义得到∠CAE=∠CAB=42°,∠ADC=90°,则∠DAC=90°-∠C=24°,然后利用∠DAE=∠CAE-∠DAC计算即可.【详解】(1)∵AD,AE和AF分别是△ABC的高、角平分线和中线,∴AD⊥BC,∠CAE=∠BAE=∠CAB,BF=CF,BC=2BF,∵S△AFB=BF•AD,S△AFC=CF•AD,∴S△AFB=S△AFC,故①②④⑤正确,③错误,故答案为①②④⑤;(2)∵∠C=66°,∠ABC=30°,∴∠CAB=180°-∠ABC-∠C=84°,∴∠CAE=∠CAB=42°,∵∠ADC=90°,∠C=66°,∴∠DAC=24°∴∠DAE=∠CAE-∠DAC=42°-24°=18°.【点睛】本题考查了三角形的高、角平分线和中线的定义,三角形内角和为180°.也考查了三角形的面积.正确的识别图形是解题的关键.22.(1)20;(2)33.【解析】【分析】(1)将已知两等式左右两边相加,即可求出所求代数式的值;(2)将已知两等式左右两边相减,即可求出所求代数式的值.【详解】(1)∵,,∴=()+()=30-10=20;(2)∵,,∴=()-()-7=30-(-10)-7=30+10-7=33.【点睛】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.23.a2-2b+4;3.【解析】【分析】首先根据整式的运算法则对算式进行化简,再把字母的值代入计算即可得到结果.【详解】解:原式==a2-2b+4,当a=-1,b=1时,原式=1-2+4=3.【点睛】本题考查整式的化简求值,熟练应用乘法对加法的分配律计算是解答本题的关键.24.,.【解析】【分析】先计算平方差公式、完全平方公式、整式的乘法,再计算整式的加减法,然后将x、y的值代入即可得.【详解】原式,,,将,代入得:原式.【点睛】本题考查了平方差公式、完全平方公式、整式的加减法与乘法,熟记公式和整式的运算法则是解题关键.25.-1.【解析】分析:原式利用完全平方公式,以及平方差公式化简,去括号合并得到最简结果,把a的值代入计算即可求出值.详解:原式=a2+4a+4﹣a2+1=4a+5当a=时,原式=﹣6+5=﹣1.点睛:本题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解答本题的关键.26.AD是∠EAC的平分线,理由见解析【解析】【分析】根据平行线和等腰三角形的性质可证得∠EAD=∠DAC,可得出结论.【详解】AD是∠EAC的平分线,∵AD∥BC,∴∠EAD=∠B,∠DAC=∠C,又∵∠B=∠C,∴∠EAD=∠DAC,∴AD是∠EAC的平分线.【点睛】本题主要考查了等腰三角形的性质和平行线的性质,掌握等边对等角和平行线的性质是解题的关键.27.(1)120°;(2)9.【解析】【分析】(1)、根据角平分线的性质以及AB=AD得出Rt△ABE和Rt△ADF全等,从而得出∠ADF=∠ABE=60°,根据平角得出∠ADC的度数;(2)、根据三角形全等得出FD=BE=1,AF=AE=2,CE=CF=CD+FD=5,最后根据S四边形AECD=S△AEC+S△ACD得出答案.【详解】解:(1)∵AC平分∠BCD,AE⊥BC,AF⊥CD,∴∠ACE=∠ACF,∠AEC=∠AFC=90°,∴AE=AF,在Rt△ABE和Rt△ADF中,AE=AF,AB=AD,∴Rt△ABE≌Rt△ADF(HL),∴∠ADF=∠ABE=60°,∴∠CDA=180°-∠ADF=120°;(2)由(1)知Rt△ABE≌Rt△ADF,∴FD=BE=1,AF=AE=2,在△AEC和△AFC中,∠ACE=∠ACF,∠AEC=∠AFC,AC=AC,∴△AEC≌△AFC(AAS),∴CE=CF=CD+FD=5,∴S四边形AECD=S△AEC+S△ACD=EC·AE+CD·AF=×5×2+×4×2=9.【点睛】本题主要考查的是角平分线的性质、三角形全等的应用以及三角形的面积计算,难度中等.理解角平分线上的点到角两边的距离相等的性质是解决这个问题的关键.28.(1);(2)(3);(4)见解析【解析】【分析】(1)关键角平分线的性质和三角形内

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论