2025年四川省仁寿第一中学数学高一上期末质量检测试题含解析_第1页
2025年四川省仁寿第一中学数学高一上期末质量检测试题含解析_第2页
2025年四川省仁寿第一中学数学高一上期末质量检测试题含解析_第3页
2025年四川省仁寿第一中学数学高一上期末质量检测试题含解析_第4页
2025年四川省仁寿第一中学数学高一上期末质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025年四川省仁寿第一中学数学高一上期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,在正三棱柱中,,若二面角的大小为,则点C到平面的距离为()A.1 B.C. D.2.直线与曲线有且仅有个公共点,则实数的取值范围是A. B.C. D.3.若,则()A. B.-3C. D.34.“密位制”是用于航海方面的一种度量角的方法,我国采用的“密位制”是密位制,即将一个圆周角分为等份,每一个等份是一个密位,那么密位对应弧度为()A. B.C. D.5.若直线与曲线有两个不同的交点,则实数的取值范围为A. B.C. D.6.已知,,三点,点使直线,且,则点D的坐标是(

)A. B.C. D.7.若函数的图象如图所示,则下列函数与其图象相符的是A. B.C. D.8.函数的最大值与最小值分别为()A.3,-1 B.3,-2C.2,-1 D.2,-29.下列命题正确的是()A.若,则B.若,则C.若,则D.若,则10.若函数存在两个零点,且一个为正数,另一个为负数,则的取值范围为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数fx=2-ax,x≤1,ax-1,x>1①存在实数a,使得fx②对任意实数a(a>0且a≠1),fx都不是R③存在实数a,使得fx的值域为R④若a>3,则存在x0∈0,+其中所有正确结论的序号是___________.12.用表示a,b中的较小者,则的最大值是____.13.从2008年京津城际铁路通车运营开始,高铁在过去几年里快速发展,并在国民经济和日常生活中扮演着日益重要的角色.下图是2009年至2016年高铁运营总里程数的折线图图(图中的数据均是每年12月31日的统计结果).根据上述信息下列结论中,所有正确结论的序号是____①2015年这一年,高铁运营里程数超过0.5万公里;②2013年到2016年高铁运营里程平均增长率大于2010到2013高铁运营里程平均增长率;③从2010年至2016年,新增高铁运营里程数最多的一年是2014年;④从2010年至2016年,新增高铁运营里程数逐年递增;14.函数的定义域是____________.15.命题“”的否定是_________.16.已知函数部分图象如图所示,则函数的解析式为:____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,,,,分别为棱,的中点,,,且.(1)证明:平面平面.(2)若四棱锥的高为3,求该四棱锥的体积.18.已知定义在上的奇函数,当时,.(1)求函数在上的解析式;(2)在给出的直角坐标系中作出的图像,并写出函数的单调区间.19.要建造一段5000m的高速公路,工程队需要把600人分成两组,一组完成一段2000m的软土地带公路的建造任务,同时另一组完成剩下的3000m的硬土地带公路的建造任务.据测算,软、硬土地每米公路的工程量分别是50人/天和30人/天,设在软土地带工作的人数x人,在软土、硬土地带筑路的时间分别记为,(1)求,;(2)求全队的筑路工期;(3)如何安排两组人数,才能使全队筑路工期最短?20.已知函数,其图像过点,相邻两条对称轴之间的距离为(1)求函数的解析式;(2)将函数的图像上每一点的横坐标伸长到原来的2倍,纵坐标保持不变,得到函数的图像,若方程在上有两个不相等的实数解,求实数m的取值范围21.记函数的定义域为集合,函数的定义域为集合(Ⅰ)求集合;(Ⅱ)若,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】取的中点,连接和,由二面角的定义得出,可得出、、的值,由此可计算出和的面积,然后利用三棱锥的体积三棱锥的体积相等,计算出点到平面的距离.【详解】取的中点,连接和,根据二面角的定义,.由题意得,所以,.设到平面的距离为,易知三棱锥的体积三棱锥的体积相等,即,解得,故点C到平面的距离为.故选C.【点睛】本题考查点到平面距离的计算,常用的方法有等体积法与空间向量法,等体积法本质就是转化为三棱锥的高来求解,考查计算能力与推理能力,属于中等题.2、A【解析】如图所示,直线过点,圆的圆心坐标直线与曲线相切时,,直线与曲线有且仅有个公共点,则实数的取值范围是考点:直线与圆相交,相切问题3、B【解析】利用同角三角函数关系式中的商关系进行求解即可.【详解】由,故选:B4、B【解析】根据弧度制公式即可求得结果【详解】密位对应弧度为故选:B5、D【解析】表示的曲线为圆心在原点,半径是1的圆在x轴以及x轴上方的部分作出曲线的图象,在同一坐标系中,再作出斜率是1的直线,由左向右移动,可发现,直线先与圆相切,再与圆有两个交点,直线与曲线相切时m值为,直线与曲线有两个交点时的m值为1,则故选D6、D【解析】先设点D的坐标,由题中条件,且,建立D点横纵坐标的方程,解方程即可求出结果.【详解】设点,则由题意可得:,解得,所以D点坐标为.【点睛】本题主要考查平面向量,属于基础题型.7、B【解析】由函数的图象可知,函数,则下图中对于选项A,是减函数,所以A错误;对于选项B,的图象是正确的;对C,是减函数,故C错;对D,函数是减函数,故D错误。故选B8、D【解析】分析:将化为,令,可得关于t的二次函数,根据t的取值范围,求二次函数的最值即可.详解:利用同角三角函数关系化简,设,则,根据二次函数性质当时,y取最大值2,当时,y取最小值.故选D.点睛:本题考查三角函数有关的最值问题,此类问题一般分为两类,一种是解析式化为的形式,用换元法求解;另一种是将解析式化为的形式,根据角的范围求解.9、D【解析】由不等式性质依次判断各个选项即可.【详解】对于A,若,由可得:,A错误;对于B,若,则,此时未必成立,B错误;对于C,当时,,C错误;对于D,当时,由不等式性质知:,D正确.故选:D.10、C【解析】根据题意画出函数图像,由图像即可分析出由一个正零点,一个负零点a的范围【详解】如图,若存在两个零点,且一个为正数,另一个为负数,则,故选【点睛】本题考查了绝对值函数及零点的简单应用,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、①②④【解析】通过举反例判断①.,利用分段函数的单调性判断②③,求出y=2-ax关于y轴的对称函数为y=a-2x,利用y=a-2x与【详解】当a=2时,fx=0,x≤1,2x-1,x>1当x>1时,若fx是R上的减函数,则2-a<00<a<12-a≥当0<a<1时,y=ax-1单减,且当x>1时,值域为0,1,而此时y=2-ax单增,最大值为2-a,所以函数当1<a<2时,y=2-ax单增,y=ax-1单增,若fx的值域为R,则2-a≥a1-1=1,所以a≤1,与由①可知,当a=2时,函数fx值域不为R;当a>2时,y=2-ax单减,最小值为2-a,y=ax-1单增,且ax-1>1又y=2-ax关于y轴的对称函数为y=a-2x,若a>3,则a-2>1=a1-1=1,但指数函数y=ax-1的增长速度快于函数y=a-2故答案为:①②④12、【解析】分别做出和的图象,数形结合即可求解.【详解】解:分别做出和的图象,如图所示:又,当时,解得:,故当时,.故答案为:.13、②③【解析】根据数据折线图,分别进行判断即可.【详解】①看2014,2015年对应的纵坐标之差小于2-1.5=0.5,故①错误;②连线观察2013年到2016年两点连线斜率更大,故②正确;③2013年到2014年两点纵坐标之差最大,故③正确;④看相邻纵坐标之差是否逐年增加,显然不是,有增有减,故④错误;故答案为:②③.14、【解析】利用对数函数的定义域列出不等式组即可求解.【详解】由题意可得,解得,所以函数的定义域为.故答案为:15、,【解析】根据全称命题的否定形式,直接求解.【详解】全称命题“”的否定是“,”.故答案为:,16、【解析】先根据图象得到振幅和周期,即求得,再根据图象过,求得,得到解析式.【详解】由图象可知,,故,即.又由图象过,故,解得,而,故,所以.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)9【解析】(1)根据,可知,由可证明,又根据中位线可证明即可由平面与平面平行的判定定理证明平面平面.(2)利用勾股定理,求得.底面为直角梯形,求得底面积后即可由四棱锥的体积公式求得解.【详解】(1)证明:因为为的中点,且,所以.因为,所以,所以四边形为平行四边形,所以.在中,因为,分别为,的中点,所以,因为,,所以平面平面.(2)因为,所以,又,所以.所以四边形的面积为,故四棱锥的体积为.【点睛】本题考查了平面与平面平行的判定,四棱锥体积的求法,属于基础题.18、(1)(2)图像答案见解析,单调递增区间为,单调递减区间为【解析】(1)由函数的奇偶性的定义和已知解析式,计算时的解析式,可得所求的解析式;(2)由分段函数的图像画法,可得所求图像,结合的图像,可得的单调区间【小问1详解】设,则,所以,又为奇函数,所以,又为定义在上的奇函数,所以,所以【小问2详解】作出函数的图像,如图所示:函数的单调递增区间为,单调递减区间为.19、(1),,,(2),且(3)安排316人到软土地带工作,284人到硬土地带工作时,可以使全队筑路工期最短【解析】(1)由题意分别计算在软土、硬土地带筑路的时间即可;(2)由得到零点,即可得到分段函数;(3)利用函数的单调性即可得到结果.【小问1详解】在软土地带筑路时间为:,在硬土地带筑路时间为,,【小问2详解】全队的筑路工期为由于,即,得从而,即,且.【小问3详解】函数区间上递减,在区间上递增,所以是函数的最小值点但不是整数,于是计算和,其中较小者即为所求于是安排316人到软土地带工作,284人到硬土地带工作时,可以使全队筑路工期最短20、(1);(2).【解析】(1)根据给定条件依次计算出,即可作答.(2)由(1)求出函数的解析式,再探讨在上的性质,结合图象即可作答.【小问1详解】因图像的相邻两条对称轴之间的距离为,则周期,解得,又,即,而,即,则,即,所以函数的解析式.【小问2详解】依题意,,当时,,而函数在上递增,在上递减,由得,由得,因此

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论