2026届浙江省湖州市安吉县上墅私立高级中学数学高一第一学期期末联考试题含解析_第1页
2026届浙江省湖州市安吉县上墅私立高级中学数学高一第一学期期末联考试题含解析_第2页
2026届浙江省湖州市安吉县上墅私立高级中学数学高一第一学期期末联考试题含解析_第3页
2026届浙江省湖州市安吉县上墅私立高级中学数学高一第一学期期末联考试题含解析_第4页
2026届浙江省湖州市安吉县上墅私立高级中学数学高一第一学期期末联考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届浙江省湖州市安吉县上墅私立高级中学数学高一第一学期期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个几何体的三视图如图所示,则该几何体的表面积为A. B.C. D.2.已知集合,,则()A. B.C. D.3.下列命题中,错误的是()A.平行于同一条直线的两条直线平行B.已知直线垂直于平面内的任意一条直线,则直线垂直于平面C.已知直线平面,直线,则直线D.已知为直线,、为平面,若且,则4.已知定义在R上的奇函数f(x)满足,当时,,则()A. B.C. D.5.已知,,函数的零点为c,则()A.c<a<b B.a<c<bC.b<a<c D.a<b<c6.的值是A.0 B.C. D.17.已知函数,则的最大值为()A. B.C. D.8.设函数,则下列函数中为奇函数的是()A. B.C. D.9.方程的解所在的区间是A. B.C. D.10.已知梯形ABCD是直角梯形,按照斜二测画法画出它的直观图A'B'C'D'(如图所示),其中A'D'=2,B'C'=4,A'B'=1,则直角梯形DC边的长度是A.5 B.2C.25 D.二、填空题:本大题共6小题,每小题5分,共30分。11.幂函数的图像在第___________象限.12.已知定义域为R的偶函数满足,当时,,则方程在区间上所有的解的和为___________.13.写出一个同时具有下列三个性质的函数:___________.①函数为指数函数;②单调递增;③.14.命题的否定是__________15.若幂函数的图象过点,则______.16.函数f(x)是定义在R上的偶函数,f(x-1)是奇函数,且当时,,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求的最小正周期;(2)当时,求的单调区间;(3)在(2)的件下,求的最小值,以及取得最小值时相应自变量x的取值.18.已知函数(1)求方程在上的解;(2)求证:对任意的,方程都有解19.黔东南州某银行柜台异地跨行转账手续费的收费标准为;转账不超过200元,每笔收1元:转账不超过10000元,每笔收转账金额的0.5%:转账超过10000元时每笔收50元,张黔需要在该银行柜台进行一笔异地跨行转账的业务.(1)若张黔转账的金额为x元,手续费为y元,请将y表示为x的函数:(2)若张黔转账的金额为10t-3996元,他支付的于练费大于5元且小了50元,求t的取值范围.20.已知全集,若集合,.(1)若,求;(2)若,求实数的取值范围.21.已知为二次函数,且(1)求的表达式;(2)设,其中,m为常数且,求函数的最值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】该几何体为半圆柱,底面为半径为1的半圆,高为2,因此表面积为,选D.2、B【解析】直接利用交集运算法则得到答案.【详解】,,则故选:【点睛】本题考查了交集的运算,属于简单题.3、C【解析】由平行线的传递性可判断A;由线面垂直的定义可判断B;由线面平行的定义可判断C;由线面平行的性质和线面垂直的性质,结合面面垂直的判定定理,可判断D.【详解】解:由平行线的传递性可得,平行于同一条直线的两条直线平行,故A正确;由线面垂直的定义可得,若直线垂直于平面内的任意一条直线,则直线垂直于平面,故B正确;由线面平行的定义可得,若直线平面,直线,则直线或,异面,故C错误;若,由线面平行的性质,可得过的平面与的交线与平行,又,可得,结合,可得,故D正确.故选:C.4、B【解析】由题意得,因为,则,所以函数表示以为周期的周期函数,又因为为奇函数,所以,所以,,,所以,故选B.5、B【解析】由函数零点存在定理可得,又,,从而即可得答案.【详解】解:因为在上单调递减,且,,所以的零点所在区间为,即.又因为,,所以a<c<b故选:B.6、B【解析】利用诱导公式和和差角公式直接求解.【详解】故选:B7、D【解析】令,可得出,令,证明出函数在上为减函数,在上为增函数,由此可求得函数在区间上的最大值,即为所求.【详解】令,则,则,令,下面证明函数在上为减函数,在上为增函数,任取、且,则,,则,,,,所以,函数在区间上为减函数,同理可证函数在区间上为增函数,,,.因此,函数的最大值为.故选:D.【点睛】方法点睛:利用函数的单调性求函数最值的基本步骤如下:(1)判断或证明函数在区间上的单调性;(2)利用函数的单调性求得函数在区间上的最值.8、A【解析】分别求出选项的函数解析式,再利用奇函数的定义即可得选项.【详解】由题意可得,对于A,是奇函数,故A正确;对于B,不是奇函数,故B不正确;对于C,,其定义域不关于原点对称,所以不是奇函数,故C不正确;对于D,,其定义域不关于原点对称,不是奇函数,故D不正确.故选:A.9、C【解析】根据零点存在性定理判定即可.【详解】设,,根据零点存在性定理可知方程的解所在的区间是.故选:C【点睛】本题主要考查了根据零点存在性定理判断零点所在的区间,属于基础题.10、B【解析】根据斜二测画法,原来的高变成了45°方向的线段,且长度是原高的一半,∴原高为AB=2而横向长度不变,且梯形ABCD是直角梯形,∴DC=故选B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据幂函数的定义域及对应值域,即可确定图像所在的象限.【详解】由解析式知:定义域为,且值域,∴函数图像在一、二象限.故答案为:一、二.12、【解析】根据给定条件,分析函数,函数的性质,再在同一坐标系内作出两个函数图象,结合图象计算作答.【详解】当时,,则函数在上单调递减,函数值从减到0,而是R上的偶函数,则函数在上单调递增,函数值从0增到,因,有,则函数的周期是2,且有,即图象关于直线对称,令,则函数在上递增,在上递减,值域为,且图象关于直线对称,在同一坐标系内作出函数和的图象,如图,观察图象得,函数和在上的图象有8个交点,且两两关于直线对称,所以方程在区间上所有解的和为.故答案为:【点睛】方法点睛:函数零点个数判断方法:(1)直接法:直接求出f(x)=0的解;(2)图象法:作出函数f(x)的图象,观察与x轴公共点个数或者将函数变形为易于作图的两个函数,作出这两个函数的图象,观察它们的公共点个数.13、(答案不唯一)【解析】根据给定条件①可得函数的解析式,再利用另两个条件判断作答.【详解】因函数是指数函数,则令,且,于是得,由于单调递增,则,又,解得,取,所以.故答案为:(答案不唯一)14、;【解析】根据存在量词的命题的否定为全称量词命题即可得解;【详解】解:因为命题“”为存在量词命题,其否定为全称量词命题为故答案为:15、【解析】设,将点代入函数的解析式,求出实数的值,即可求出的值.【详解】设,则,得,,因此,.故答案为.【点睛】本题考查幂函数值的计算,解题的关键就是求出幂函数的解析式,考查运算求解能力,属于基础题.16、1【解析】由函数f(x)是定义在R上的偶函数及f(x-1)是奇函数得到函数的周期,进而根据函数的性质求得答案.【详解】根据题意,函数f(x)是定义在R上的偶函数,则有f(-x)=f(x),又f(x-1)是奇函数,则f(-x-1)=-f(x-1),所以f(x+2)=f[-(x+2)]=f[-(x+1)-1]=-f[(x+1)-1]=-f(x),即f(x+2)=-f(x),则有f(x+4)=-f(x+2)=f(x),所以函数f(x)是周期为4的周期函数,则,,故故答案为:1.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)的单调递增区间为,单调递减区间为(3)当时,的最小值为0【解析】(1)根据周期公式计算即可.(2)求出单调区间,然后与所给的范围取交集即可.(3)根据(2)的结论,对与进行比较即可.【小问1详解】,,故的最小正周期为.【小问2详解】先求出增区间,即:令解得所以在区间上,当时,函数单调递增,当时,函数单调递减;所以的单调递增区间为,单调递减区间为【小问3详解】由(2)所得到的单调性可得,,所以在时取得最小值0.18、(1)或;(2)证明见解析【解析】(1)根据诱导公式和正弦、余弦函数的性质可得答案;(2)令,分,,三种情况,分别根据零点存在定理可得证.【详解】解:(1)由,得,所以当时,上述方程的解为或,即方程在上的解为或;(2)证明:令,则,①当时,,令,则,即此时方程有解;②当时,,又∵在区间上是不间断的一条曲线,由零点存在性定理可知,在区间上有零点,即此时方程有解;③当时,,,又∵在区间上是不间断的一条曲线,由零点存在性定理可知,在区间上有零点,即此时方程有解综上,对任意的,方程都有解19、(1)(2)【解析】(1)根据已知条件,写成分段函数,即可求解;(2)根据已知条件,结合指数函数的性质,即可求解【小问1详解】解:当时,,当时,,当时,,故;【小问2详解】解:从(1)中的分段函数得,如果张黔支付的手续费大于5元且小于50元,则转账金额大于1000元,且小于10000元,则只需要考虑当时的情况即可,由,所以,得,得,即实数t的取值范围是20、(1)(2)【解析】(1)利用集合的交集

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论