2026届贵州省遵义求是高级中学高一上数学期末达标检测模拟试题含解析_第1页
2026届贵州省遵义求是高级中学高一上数学期末达标检测模拟试题含解析_第2页
2026届贵州省遵义求是高级中学高一上数学期末达标检测模拟试题含解析_第3页
2026届贵州省遵义求是高级中学高一上数学期末达标检测模拟试题含解析_第4页
2026届贵州省遵义求是高级中学高一上数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届贵州省遵义求是高级中学高一上数学期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列命题正确的是A.在空间中两条直线没有公共点,则这两条直线平行B.一条直线与一个平面可能有无数个公共点C.经过空间任意三点可以确定一个平面D.若一个平面上有三个点到另一个平面的距离相等,则这两个平面平行2.已知定义在上的函数满足:,且,,则方程在区间上的所有实根之和为A.-5 B.-6C.-7 D.-83.已知,其中a,b为常数,若,则()A. B.C.10 D.24.全集U={1,2,3,4,5,6},M={x|x≤4},则M等于()A.{1,3} B.{5,6}C.{1,5} D.{4,5}5.满足的角的集合为()A. B.C. D.6.若函数和.分别由下表给出:011012301则不等式的解集为()A. B.C. D.7.设命题,则为A. B.C. D.8.函数f(x)=|x|+(aR)的图象不可能是()A. B.C. D.9.“”的一个充分不必要条件是()A. B.C. D.10.已知,,且,则A.2 B.1C.0 D.-1二、填空题:本大题共6小题,每小题5分,共30分。11.已知一扇形的弧所对的圆心角为54°,半径r=20cm,则扇形的周长为___cm.12.集合,则____________13.已知函数,若函数在区间内有3个零点,则实数的取值范围是______14.若正实数满足,则的最大值是________15.在平面四边形中,,若,则__________.16.在平面直角坐标系中,以轴为始边作两个锐角,,它们的终边分别与单位圆相交于,两点,,的纵坐标分别为,.则的终边与单位圆交点的纵坐标为_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.我们知道,声音通过空气传播时会引起区域性的压强值改变.物理学中称为“声压”.用P表示(单位:Pa(帕)):“声压级”S(单位:dB(分贝))表示声压的相对大小.已知它与“某声音的声压P与基准声压的比值的常用对数(以10为底的对数)值成正比”,即(k是比例系数).当声压级S提高60dB时,声压P会变为原来的1000倍.(1)求声压级S关于声压P的函数解析式;(2)已知两个不同的声源产生的声压P1,P2叠加后得到的总声压,而一般当声压级S<45dB时人类是可以正常的学习和休息的.现窗外同时有两个声压级为40dB的声源,在不考虑其他因素的情况下,请问这两个声源叠加后是否会干扰我们正常的学习?并说明理由.(参考数据:lg2≈0.3)18.计算:(1);(2)已知,求的值19.已知函数(为常数)是奇函数(1)求的值;(2)判断函数在上的单调性,并予以证明20.计算下列各式的值.(1);(2).21.已知函数的图象相邻两条对称轴之间的距离为.(1)当时,求函数的最大值和最小值;(2)将函数的图象向左平移个单位后得到函数的图象,若为偶函数,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据平面的基本性质和空间中两直线的位置关系,逐一判定,即可得到答案【详解】由题意,对于A中,在空间中两条直线没有公共点,则这两条直线平行或异面,所以不正确;对于B中,当一条直线在平面内时,此时直线与平面可能有无数个公共点,所以是正确的;对于C中,经过空间不共线的三点可以确定一个平面,所以是错误的;对于D中,若一个平面上有三个点到另一个平面的距离相等,则这两个平面平行或相交,所以不正确,故选B【点睛】本题主要考查了平面的基本性质和空间中两直线的位置关系,其中解答中熟记平面的基本性质和空间中两直线的位置关系是解答的关键,着重考查了推理与论证能力,属于基础题2、C【解析】由题意知,函数的周期为2,则函数在区间上的图像如下图所示:由图形可知函数在区间上的交点为,易知点的横坐标为-3,若设的横坐标为,则点的横坐标为,所以方程在区间上的所有实数根之和为.考点:分段函数及基本函数的性质.3、A【解析】计算出,结合可求得的值.【详解】因为,所以,若,则.故选:A4、B【解析】M即集合U中满足大于4的元素组成的集合.【详解】由全集U={1,2,3,4,5,6},M={x|x≤4}则M={5,6}.故选:B【点睛】本题考查求集合的补集,属于基础题.5、D【解析】利用正弦函数的图像性质即可求解.【详解】.故选:D.6、C【解析】根据题中的条件进行验证即可.【详解】当时,有成立,故是不等式的解;当时,有不成立,故不是不等式的解;当时,有成立,故是不等式的解.综上:可知不等式的解集为.故选:C7、C【解析】特称命题否定为全称命题,所以命题的否命题应该为,即本题的正确选项为C.8、C【解析】对分类讨论,将函数写成分段形式,利用对勾函数的单调性,逐一进行判断图象即可.【详解】,①当时,,图象如A选项;②当时,时,,在递减,在递增;时,,由,单调递减,所以在上单调递减,故图象为B;③当时,时,,可得,,在递增,即在递增,图象为D;故选:C.9、D【解析】利用充分条件,必要条件的定义判断即得.【详解】由,可得,所以是的充要条件;所以是既不充分也不必要条件;所以是的必要不充分条件;所以是的充分不必要条件.故选:D.10、D【解析】∵,∴∵∴∴故选D二、填空题:本大题共6小题,每小题5分,共30分。11、6π+40【解析】根据角度制与弧度制的互化,可得圆心角,再由扇形的弧长公式,可得弧长,即可求解扇形的周长,得到答案.【详解】由题意,根据角度制与弧度制的互化,可得圆心角,∴由扇形的弧长公式,可得弧长,∴扇形的周长为.【点睛】本题主要考查了扇形的弧长公式的应用,其中解答中熟记扇形的弧长公式,合理准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.12、【解析】分别解出集合,,再根据并集的定义计算可得.【详解】∵∴,∵,∴,则,故答案为:【点睛】本题考查指数不等式、对数不等式的解法,并集的运算,属于基础题.13、【解析】函数在区间内有3个零点,等价于函数和的图象在区间内有3个交点,作出函数和的图象,利用数形结合可得结果【详解】若,则,,若,则,,若,则,,,,,,设和,则方程在区间内有3个不等实根,等价为函数和在区间内有3个不同的零点作出函数和的图象,如图,当直线经过点时,两个图象有2个交点,此时直线为,当直线经过点,时,两个图象有3个交点;当直线经过点和时,两个图象有3个交点,此时直线为,当直线经过点和时,两个图象有3个交点,此时直线为,要使方程,两个图象有3个交点,在区间内有3个不等实根,则,故答案为【点睛】本题主要考查函数的零点与方程根的个数的应用,以及数形结合思想的应用,属于难题14、4【解析】由基本不等式及正实数、满足,可得的最大值.【详解】由基本不等式,可得正实数、满足,,可得,当且仅当时等号成立,故的最大值为,故答案为:4.15、##1.5【解析】设,在中,可知,在中,可得,由正弦定理,可得答案.【详解】设,在中,,,,在中,,,,,由正弦定理得:,得,.故答案为:.16、【解析】根据任意角三角函数的定义可得,,,,再由展开求解即可.【详解】以轴为始边作两个锐角,,它们的终边分别与单位圆相交于,两点,,的纵坐标分别为,所以,是锐角,可得,因为锐角的终边与单位圆相交于Q点,且纵坐标为,所以,是锐角,可得,所以,所以的终边与单位圆交点的纵坐标为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)不会,理由见解析【解析】(1)根据已知条件代入具体数据即可求出参数的值,从而确定解析式(2)将声压级代入解析式求出声压,根据求出叠加后的声压,代入解析式可求出对应的声压级,与45比较大小,判断是否会干扰学习【小问1详解】由题意得:,,所以,所以声压级S关于声压P的函数解析式为【小问2详解】不会干扰我们正常的学习,理由如下:将代入得:,所以,解得:,即所以,代入得:,所以不会干扰我们正常的学习.18、(1)20;(2)【解析】(1)利用指对数的运算化简(2)利用三角函数诱导公式,以及弦化切的运算【详解】(1)对原式进行计算如下:(2)对原式进行化简如下:将代入上式得:原式19、(1)1;(2)函数在上是减函数,证明见详解.【解析】(1)利用,化简后可求得的值.(2)利用单调性的定义,令,计算判断出在上函数为减函数.再根据复合函数同增异减,可判断得在上的单调性.【详解】(1)∵是奇函数,∴,即,即,解得或(舍去),故的值为1(2)函数在上是减函数证明:由(1)知,设,任取,∴,∵,,,∴,∴在上为减函数,又∵函数在上为增函数,∴函数在上为减函数【点睛】本题考查由对数型函数的奇偶性求参数值,以及利用单调性定义证明函数单调性,属综合中档题.20、(1)125(2)0【解析】(1)按照指数运算进行计算即可;(2)按照对数运算进行计算即可;【小问1详解】;【小问2详解】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论