版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省“五地六校”合作体2025年数学高二第一学期期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量,,且,,,则一定共线的三点是()A.A,B,D B.A,B,CC.B,C,D D.A,C,D2.已知集合,,则A. B.C. D.3.过椭圆右焦点作x轴的垂线,并交C于A,B两点,直线l过C的左焦点和上顶点.若以线段AB为直径的圆与有2个公共点,则C的离心率e的取值范围是()A. B.C. D.4.若正三棱柱的所有棱长都相等,D是的中点,则直线AD与平面所成角的正弦值为A. B.C. D.5.已知F为椭圆C:=1(a>b>0)右焦点,O为坐标原点,P为椭圆C上一点,若|OP|=|OF|,∠POF=120°,则椭圆C的离心率为()A. B.C.-1 D.-16.已知函数,在定义域内任取一点,则使的概率是()A. B.C. D.7.如图是函数的导函数的图象,下列结论中正确的是()A.在上是增函数 B.当时,取得最小值C.当时,取得极大值 D.在上是增函数,在上是减函数8.长方体中,,,,为侧面内(含边界)的动点,且满足,则四棱锥体积的最小值为()A. B.C. D.9.已知抛物线的准线方程为,则此抛物线的标准方程为()A. B.C. D.10.若实数x,y满足不等式组,则的最小值为()A. B.0C. D.211.《米老鼠和唐老鸭》这部动画给我们的童年带来了许多美好的回忆,令我们印象深刻.如图所示,有人用3个圆构成米奇的简笔画形象.已知3个圆方程分别为:圆圆,圆若过原点的直线与圆、均相切,则截圆所得的弦长为()A B.C. D.12.对于三次函数,给出定义:设是函数的导数,是的导数,若方程有实数解,则称点为函数的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数图象都有对称中心,且“拐点”就是对称中心.设函数,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知空间向量,且,则___________.14.若圆C的方程为,点P是圆C上的动点,点O为坐标原点,则的最大值为______15.在单位正方体中,点E为AD的中点,过点B,E,的平面截该正方体所得的截面面积为______.16.一支车队有10辆车,某天下午依次出发执行运输任务.第一辆车于14时出发,以后每间隔10分钟发出一辆车.假设所有的司机都连续开车,并都在18时停下来休息.截止到18时,最后一辆车行驶了____小时,如果每辆车行驶的速度都是60km/h,这个车队各辆车行驶路程之和为______千米三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆M经过原点和点,且它的圆心M在直线上.(1)求圆M的方程;(2)若点D为圆M上的动点,定点,求线段CD的中点P的轨迹方程.18.(12分)如图所示,在直三棱柱中,,,(1)求三棱柱的表面积;(2)求异面直线与所成角的大小(结果用反三角函数表示)19.(12分)如图①,直角梯形中,,,点,分别在,上,,,将四边形沿折起,使得点,分别到达点,的位置,如图②,平面平面,.(1)求证:平面平面;(2)求二面角的余弦值.20.(12分)已知等差数列满足,(1)求数列的通项公式及前10项和;(2)等比数列满足,,求和:21.(12分)已知椭圆的离心率为,点在椭圆上,直线与交于,两点(1)求椭圆的方程及焦点坐标;(2)若线段的垂直平分线经过点,求的取值范围22.(10分)在△ABC中,角A,B,C的对边分别是a,b,c已知c•cosB+(b-2a)cosC=0(1)求角C的大小(2)若c=2,a+b=ab,求△ABC的面积
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由已知,分别表示出选项对应的向量,然后利用平面向量共线定理进行判断即可完成求解.【详解】因,,,选项A,,,若A,B,D三点共线,则,即,解得,故该选项正确;选项B,,,若A,B,C三点共线,则,即,解得不存,故该选项错误;选项C,,,若B,C,D三点共线,则,即,解得不存在,故该选项错误;选项D,,,若A,C,D三点共线,则,即,解得不存在,故该选项错误;故选:A.2、B【解析】由交集定义直接求解即可.【详解】集合,,则.故选B.【点睛】本题主要考查了集合的交集运算,属于基础题.3、A【解析】求得以为直径的圆的圆心和半径,求得直线的方程,利用圆心到直线的距离小于半径列不等式,化简后求得椭圆离心率的取值范围.【详解】椭圆的左焦点,右焦点,上顶点,,所以为直径的圆的圆心为,半径为.直线的方程为,由于以线段为直径的圆与相交,所以,,,,,所以椭圆的离心率的取值范围是.故选:A4、A【解析】建立空间直角坐标系,得到相关点的坐标后求出直线的方向向量和平面的法向量,借助向量的运算求出线面角的正弦值【详解】取AC的中点为坐标原点,建立如图所示的空间直角坐标系设三棱柱的棱长为2,则,∴设为平面的一个法向量,由故令,得设直线AD与平面所成角为,则,所以直线AD与平面所成角的正弦值为故选A【点睛】空间向量的引入为解决立体几何问题提供了较好的方法,解题时首先要建立适当的坐标系,得到相关点的坐标后借助向量的运算,将空间图形的位置关系或数量关系转化为向量的运算处理.在解决空间角的问题时,首先求出向量夹角的余弦值,然后再转化为所求的空间角.解题时要注意向量的夹角和空间角之间的联系和区别,避免出现错误5、D【解析】记椭圆的左焦点为,在中,通过余弦定理得出,,根据椭圆的定义可得,进而可得结果.【详解】记椭圆的左焦点为,在中,可得,在中,可得,故,故,故选:D.6、A【解析】解不等式,根据与长度有关的几何概型即可求解.【详解】由题意得,即,由几何概型得,在定义域内任取一点,使的概率是.故选:A.7、D【解析】根据导函数的图象判断出函数的单调区间、极值、最值,由此确定正确选项.【详解】根据图象知:当,时,函数单调递减;当,时,函数单调递增.所以在上单调递减,在上单调递增,在上单调递减,在上单调递增,故选项A不正确,选项D正确;故当时,取得极小值,选项C不正确;当时,不是取得最小值,选项B不正确;故选:D.8、D【解析】取的中点,以点为坐标原点,、、的方向分别为、、轴的正方向建立空间直角坐标系,分析可知点的轨迹是以点、为焦点的椭圆,求出椭圆的方程,可知当点为椭圆与棱或的交点时,点到平面的距离取最小值,由此可求得四棱锥体积的最小值.【详解】取的中点,以点为坐标原点,、、的方向分别为、、轴的正方向建立如下图所示的空间直角坐标系,设点,其中,,则、,因为平面,平面,则,所以,,同理可得,所以,,所以点的轨迹是以点、为焦点,且长轴长为的椭圆的一部分,则,,,所以,点的轨迹方程为,点到平面的距离为,当点为曲线与棱或棱的交点时,点到平面的距离取最小值,将代入方程得,因此,四棱锥体积的最小值为.故选:D.9、D【解析】由已知设抛物线方程为,由题意可得,求出,从而可得抛物线的方程【详解】因为抛物线的准线方程为,所以设抛物线方程为,则,得,所以抛物线方程为,故选:D,10、A【解析】画出可行域,令,则,结合图形求出最小值,即可得解;【详解】解:画出不等式组,表示的平面区域如图阴影部分所示,由,解得,即,令,则.结合图形可知当过点时,取得最小值,且,即故选:A11、A【解析】设直线,利用直线与圆相切,求得斜率,再利用弦长公式求弦长【详解】设过点的直线.由直线与圆、圆均相切,得解得(1).设点到直线的距离为则(2).又圆的半径直线截圆所得弦长结合(1)(2)两式,解得12、B【解析】根据“拐点”的概念可判断函数的对称中心,进而求解.【详解】,,,令,解得:,而,故函数关于点对称,,,故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据空间向量共线的坐标表示可得出关于的等式,求出的值即可.【详解】由已知可得,解得.故答案为:.14、##【解析】根据点与圆的位置关系求得正确答案.【详解】圆的方程可化为,所以圆心为,半径.由于,所以原点在圆外,所以最大值为.故答案为:15、【解析】根据题意,取的中点,连接、、、,分析可得四边形为平行四边形,则要求的截面就是四边形,进而可得为菱形,连接、,求出、的长,计算可得答案【详解】根据题意,取的中点,连接、、、,易得,,则四边形为平行四边形,过点,,的截面就是,又由正方体为单位正方体,则,则为菱形,连接、,易得,,则,即要求截面的面积为,故答案为:16、①.2.5####②.1950【解析】通过分析,求出最后一辆车的出发时间,从而求出最后一辆车的行驶时间,这10辆车的行驶路程可以看作等差数列,利用等差数列求和公式进行求解.【详解】因为,所以最后一辆车出发时间为15时30分,则最后一辆车行驶时间为18-15.5=2.5小时,第一辆车行程为km,且从第二辆车开始,每辆车都比前一辆少走km,这10辆车的行驶路程可以看作首项为240,公差为-10的等差数列,则10辆车的行程路程之和为(km).故答案为:2.5,1950三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2).【解析】(1)设圆M的方程为,由已知条件建立方程组,求解即可;(2)设,,依题意得.代入圆M的方程可得点P的轨迹方程.【小问1详解】解:设圆M的方程为,则圆心依题意得,解得.所以圆M的方程为.【小问2详解】解:设,,依题意得,得.点为圆M上的动点,得,化简得P的轨迹方程为.18、(1);(2)【解析】(1)利用S=2S△ABC+S侧,可得三棱柱ABC﹣A1B1C1的表面积S;(2)连接BC1,确定∠BA1C1就是异面直线A1B与AC所成的角(或其补角),在△A1BC1中,利用余弦定理可求结论【详解】(1)在△ABC中,因为AB=2,AC=4,∠ABC=90°,所以BC=.S△ABC=AB×BC=2所以S=2S△ABC+S侧=4+(2+2+4)×4=24+12(2)连接BC1,因为AC∥A1C1,所以∠BA1C1就是异面直线A1B与AC所成的角(或其补角)在△A1BC1中,A1B=2,BC1=2,A1C1=4,由余弦定理可得cos∠BA1C1=,所以∠BA1C1=arccos,即异面直线A1B与AC所成角的大小为arccos【点睛】本题考查三棱柱的表面积,考查线线角,解题的关键是正确作出线线角,属于中档题19、(1)证明见解析(2)【解析】(1)根据,,,,易证,再根据平面平面,,得到平面,进而得到,再利用线面垂直的判定定理证明平面即可;(2)根据(1)知,,两两垂直,以,,的方向分别为,,轴的正方向建立空间直角坐标系,分别求得平面的一个法向量和平面的一个法向量,设二面角的大小为,由求解.【小问1详解】解:因为,,,所以,,又,所以是等腰直角三角形,即,所以.由平面几何知识易知,所以,即.又平面平面,平面平面,,所以平面,又平面,所以.又,所以平面,又平面,所以平面平面.【小问2详解】由(1)知,,两两垂直,以,,的方向分别为,,轴的正方向,建立如图所示的空间直角坐标系,设,则,,,,F(1,0,0),则,,设平面的一个法向量为,由,得,取,则.由,,,得平面,所以平面的一个法向量为,设二面角的大小为,则,由图可知二面角为钝二面角,所以二面角的余弦值为.20、(1),175(2)【解析】(1)由已知结合等差数列的通项公式先求出公差,然后结合通项公式及求和公式即可求解;(2)结合等比数列的性质先求出,然后结合等比数列性质及求和公式可求【小问1详解】解:等差数列满足,,所以,,;【小问2详解】解:因为等比数列满足,,所以或(舍去),由等比数列的性质可知,是以1为首项,4为公比的等比数列,所以,所以21、(1),(2)【解析】(1)由题意,列出关于a,b,c的方程组求解即可得答案;(2)设M(x1,y1),N(x2,y2),线段MN的中点(x0,y0),则,作差可得①,又线段MN的垂直平分线过点A(0,1),则②,联立直线MN与椭圆的方程,可得﹣t2+1+4k2>0(*),③,由①②③及(*)式联立即可求解【小问1详解】解:由题意可得,解得,所以椭圆C的方程为,焦点坐标为【小问2详解】解:设M(x1,y1),N(x2,y2),线段MN的中点(x0,y0),因为,所以,即,所以①,因为线段MN的垂直平分线过点A(0,1),所以,即②,联立,得(1+4k2)x2+8ktx+4t2﹣4=0,所以=(8kt)2﹣4(1+4k2)(4t2﹣4)=﹣16t2+16+64k2>0,即﹣t2+1+4k2>0(*),③,把③代入②,得④,把③④代入①得,所以,即,代入(*)得,解得,又k≠0,所以k的取值范围为22、(1);(2).【解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年嵩山少林武术职业学院单招职业适应性测试题库及完整答案详解1套
- 2026年甘肃省陇南地区单招职业适应性测试题库及参考答案详解一套
- 2026年河北省石家庄市单招职业倾向性测试题库及答案详解一套
- 2026年长沙电力职业技术学院单招职业适应性考试题库及完整答案详解1套
- 2026年岳阳现代服务职业学院单招职业技能考试题库及参考答案详解1套
- 2026年江苏商贸职业学院单招综合素质考试题库及完整答案详解1套
- 2026年湖南都市职业学院单招职业适应性考试题库含答案详解
- 2026年嵩山少林武术职业学院单招职业技能测试题库及完整答案详解1套
- 2026年闽北职业技术学院单招职业适应性测试题库附答案详解
- 2026年宁波幼儿师范高等专科学校单招职业倾向性测试题库及答案详解一套
- 2025秋人教版(新教材)初中美术八年级上册知识点及期末测试卷及答案
- 2026年保安员考试题库500道附完整答案(历年真题)
- 2025至2030中国司法鉴定行业发展研究与产业战略规划分析评估报告
- (2025年)危重病人的观察与护理试题及答案
- 膝关节韧带损伤康复课件
- 个人契约协议书范本
- 医药区域经理述职报告
- 建筑施工项目职业病危害防治措施方案
- 船员上船前安全培训课件
- 袖阀注浆管施工方案
- 市政工程桩基检测技术操作规程
评论
0/150
提交评论