(完整版)苏教七年级下册期末解答题压轴数学资料专题真题(比较难)答案_第1页
(完整版)苏教七年级下册期末解答题压轴数学资料专题真题(比较难)答案_第2页
(完整版)苏教七年级下册期末解答题压轴数学资料专题真题(比较难)答案_第3页
(完整版)苏教七年级下册期末解答题压轴数学资料专题真题(比较难)答案_第4页
(完整版)苏教七年级下册期末解答题压轴数学资料专题真题(比较难)答案_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(完整版)苏教七年级下册期末解答题压轴数学资料专题真题(比较难)答案一、解答题1.如图,直线,、是、上的两点,直线与、分别交于点、,点是直线上的一个动点(不与点、重合),连接、.(1)当点与点、在一直线上时,,,则_____.(2)若点与点、不在一直线上,试探索、、之间的关系,并证明你的结论.2.如图①,平分,⊥,∠B=450,∠C=730.(1)求的度数;(2)如图②,若把“⊥”变成“点F在DA的延长线上,”,其它条件不变,求的度数;(3)如图③,若把“⊥”变成“平分”,其它条件不变,的大小是否变化,并请说明理由.3.如图1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC.(1)求证:∠BED=90°;(2)如图2,延长BE交CD于点H,点F为线段EH上一动点,∠EDF=α,∠ABF的角平分线与∠CDF的角平分线DG交于点G,试用含α的式子表示∠BGD的大小;(3)如图3,延长BE交CD于点H,点F为线段EH上一动点,∠EBM的角平分线与∠FDN的角平分线交于点G,探究∠BGD与∠BFD之间的数量关系,请直接写出结论:.4.如图,,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,.(1)=;(2)如图2,点C、D是、角平分线上的两点,且,求的度数;(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若,,且,求n的值.5.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方.(1)l2与l3的位置关系是;(2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED=°,∠ADC=°;(3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG;(4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.6.已知△ABC的面积是60,请完成下列问题:(1)如图1,若AD是△ABC的BC边上的中线,则△ABD的面积△ACD的面积.(填“>”“<”或“=”)(2)如图2,若CD、BE分别是△ABC的AB、AC边上的中线,求四边形ADOE的面积可以用如下方法:连接AO,由AD=DB得:S△ADO=S△BDO,同理:S△CEO=S△AEO,设S△ADO=x,S△CEO=y,则S△BDO=x,S△AEO=y由题意得:S△ABE=S△ABC=30,S△ADC=S△ABC=30,可列方程组为:,解得,通过解这个方程组可得四边形ADOE的面积为.(3)如图3,AD:DB=1:3,CE:AE=1:2,请你计算四边形ADOE的面积,并说明理由.7.如图,,点在直线上,点在直线和之间,,平分.(1)求的度数(用含的式子表示);(2)过点作交的延长线于点,作的平分线交于点,请在备用图中补全图形,猜想与的位置关系,并证明;(3)将(2)中的“作的平分线交于点”改为“作射线将分为两个部分,交于点”,其余条件不变,连接,若恰好平分,请直接写出__________(用含的式子表示).8.如图1,点O为直线上一点,过点O作射线,使,将一把直角三角尺的直角顶点放在点O处,一边在射线上,另一边在直线的下方,其中.(1)将图1中的三角尺绕点O顺时针旋转至图2,使一边在的内部,且恰好平分,求的度数;(2)将图1中的三角尺绕点O顺时针旋转至图3,使在的内部,请探究与之间的数量关系,并说明理由.(3)将图1中三角尺绕点O按每秒的速度沿顺时针方向旋转一周,旋转过程中,在第_____秒时,边恰好与射线平行;在第_______秒时,直线恰好平分锐角.9.已知,如图:射线分别与直线、相交于、两点,的角平分线与直线相交于点,射线交于点,设,且.(1)________,________;直线与的位置关系是______;(2)如图,若点是射线上任意一点,且,试找出与之间存在一个什么确定的数量关系?并证明你的结论.(3)若将图中的射线绕着端点逆时针方向旋转(如图)分别与、相交于点和点时,作的角平分线与射线相交于点,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由.10.(1)证明:两条平行线被第三条直线所截,一对同旁内角的角平分线互相垂直.已知:如图,AB∥CD,.求证:.证明:(2)如图,AB∥CD,点E、F分别在直线AB、CD上,EM∥FN,∠AEM与∠CFN的角平分线相交于点O.求证:EO⊥FO.(3)如图,AB∥CD,点E、F分别在直线AB、CD上,EM∥PN,MP∥NF,∠AEM与∠CFN的角平分线相交于点O,∠P=102°,求∠O的度数.【参考答案】一、解答题1.(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出=60°,计算∠PFD即可;(2)根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时;②当点P在AB上方时;③当点P在CD下方时,分别求出∠AEP、∠EPF、∠CFP之间的关系即可.【详解】(1)当点与点、在一直线上时,作图如下,∵AB∥CD,∠FHP=60°,,∴=∠FHP=60°,∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案为:120°;(2)满足关系式为∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.证明:根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时,过点P作PQ∥AB,如下图,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF=∠AEP+∠CFP;②当点P在AB上方时,如下图所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③当点P在CD下方时,∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,综上所述,∠AEP、∠EPF、∠CFP之间满足的关系式为:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案为:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【点睛】本题考查了平行线的性质,外角的性质,掌握平行线的性质是解题的关键,注意分情况讨论问题.2.(1)∠DAE=14°;(2)∠DFE=14°;(3)∠DAE的大小不变,∠DAE=14°,证明详见解析.【分析】(1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE解析:(1)∠DAE=14°;(2)∠DFE=14°;(3)∠DAE的大小不变,∠DAE=14°,证明详见解析.【分析】(1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE的度数.(2)求出∠ADE的度数,利用∠DFE=90°-∠ADE即可求出∠DAE的度数.(3)利用AE平分∠BEC,AD平分∠BAC,求出∠DFE=15°即是最好的证明.【详解】(1)∵∠B=45°,∠C=73°,∴∠BAC=62°,∵AD平分∠BAC,∴∠BAD=∠CAD=31°,∴∠ADE=∠B+∠BAD=45°+31°=76°,∵AE⊥BC,∴∠AEB=90°,∴∠DAE=90°-∠ADE=14°.(2)同(1),可得,∠ADE=76°,∵FE⊥BC,∴∠FEB=90°,∴∠DFE=90°-∠ADE=14°.(3)的大小不变.=14°理由:∵AD平分∠BAC,AE平分∠BEC∴∠BAC=2∠BAD,∠BEC=2∠AEB∵∠BAC+∠B+∠BEC+∠C=360°∴2∠BAD+2∠AEB=360°-∠B-∠C=242°∴∠BAD+∠AEB=121°∵∠ADE=∠B+∠BAD∴∠ADE=45°+∠BAD∴∠DAE=180°-∠AEB-∠ADE=180°-∠AEB-45°-∠BAD=135°-(∠AEB+∠BAD)=135°-121°=14°【点睛】本题考查了三角形内角和定理和三角形外角的性质,熟练掌握性质是解题的关键.3.(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°解析:(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°,从而根据∠BED=180°﹣(∠EBD+∠EDB)即可得到答案;(2)过点G作GP∥AB,根据AB∥CD,得到GP∥AB∥CD,从而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根据∠EBD+∠EDB=90°,∠ABD+∠BDC=180°,得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分线的定义求出2∠ABG+2∠CDG=90°﹣α即可得到答案;(3)过点F、G分别作FM∥AB、GM∥AB,从而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根据BG平分∠FBP,DG平分∠FDQ,∠4=∠FBP=(180°﹣∠3),∠6=∠FDQ=(180°﹣∠5),即可求解.【详解】解:(1)证明:∵BE平分∠ABD,∴∠EBD=∠ABD,∵DE平分∠BDC,∴∠EDB=∠BDC,∴∠EBD+∠EDB=(∠ABD+∠BDC),∵AB∥CD,∴∠ABD+∠BDC=180°,∴∠EBD+∠EDB=90°,∴∠BED=180°﹣(∠EBD+∠EDB)=90°.(2)解:如图2,由(1)知:∠EBD+∠EDB=90°,又∵∠ABD+∠BDC=180°,∴∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,∵BG平分∠ABE,DG平分∠CDF,∴∠ABE=2∠ABG,∠CDF=2∠CDG,∴2∠ABG+2∠CDG=90°﹣α,过点G作GP∥AB,∵AB∥CD,∴GP∥AB∥CD∴∠ABG=∠BGP,∠PGD=∠CDG,∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=;(3)如图,过点F、G分别作FN∥AB、GM∥AB,∵AB∥CD,∴AB∥GM∥FN∥CD,∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM,∴∠BFD=∠BFN+∠DFN=∠3+∠5,∠BGD=∠BGM+∠DGM=∠4+∠6,∵BG平分∠FBP,DG平分∠FDQ,∴∠4=∠FBP=(180°﹣∠3),∠6=∠FDQ=(180°﹣∠5),∴∠BFD+∠BGD=∠3+∠5+∠4+∠6,=∠3+∠5+(180°﹣∠3)+(180°﹣∠5),=180°+(∠3+∠5),=180°+∠BFD,整理得:2∠BGD+∠BFD=360°.【点睛】本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.4.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,,然后根据三角形外角的性质解答即可;(3)设BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,从而,又∠FKN=∠F+∠FAK,得,即可求n.【详解】解:(1)如图:过O作OP//MN,∵MN//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2)分别延长AC、CD交GH于点E、F,∵AC平分且,∴,又∵MN//GH,∴;∵,∵BD平分,∴,又∵∴;∴;(3)设FB交MN于K,∵,则;∴∵,∴,,在△FAK中,,∴,∴.经检验:是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.5.(1)互相平行;(2)35,20;(3)见解析;(4)不变,【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变,【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行线的性质即可得到结论;(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论.【详解】解:(1)直线l2⊥l1,l3⊥l1,∴l2∥l3,即l2与l3的位置关系是互相平行,故答案为:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=BCD,∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案为:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;(4)∠N:∠BCD的值不会变化,等于;理由如下:∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=.【点睛】本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.6.(1)=;(2),20;(3)S四边形ADOE=13.理由见解析.【分析】(1)利用三角形的面积公式计算即可得出结论;(2)利用题干所给解答方法解答即可;(3)连接AO,利用(2)中的方法,解析:(1)=;(2),20;(3)S四边形ADOE=13.理由见解析.【分析】(1)利用三角形的面积公式计算即可得出结论;(2)利用题干所给解答方法解答即可;(3)连接AO,利用(2)中的方法,设S△ADO=x,S△CEO=y,则S△BDO=x,S△AEO=2y,利用已知条件列出方程组,解方程组即可得出结论.【详解】解:(1)如图1,过A作AH⊥BC于H,∵AD是△ABC的BC边上的中线,∴BD=CD,∴,,∴S△ABD=S△ACD,故答案为:=;(2)解方程组得,∴S△AOD=S△BOD=10,∴S四边形ADOB=S△AOD+S△AOE=10+10=20,故答案为:,20;(3)如图3,连接AO,∵AD:DB=1:3,∴S△ADO=S△BDO,∵CE:AE=1:2,∴S△CEO=S△AEO,设S△ADO=x,S△CEO=y,则S△BDO=3x,S△AEO=2y,由题意得:S△ABE=S△ABC=40,S△ADC=S△ABC=15,可列方程组为:,解得:,∴S四边形ADOE=S△ADO+S△AEO=x+2y=13.【点睛】本题是一道四边形的综合题,主要考查了三角形的面积公式,等底同高的三角形面积相等,高相同的三角形的面积比等于底的比,二元一次方程组的解法.本题是阅读型题目,准确理解题干中的方法并正确应用是解题的关键.7.(1);(2)画图见解析,,证明见解析;(3)或【分析】(1)根据平行线的传递性推出,再利用平行线的性质进行求解;(2)猜测,根据平分,推导出,再根据、平分,通过等量代换求解;(3)分两种情解析:(1);(2)画图见解析,,证明见解析;(3)或【分析】(1)根据平行线的传递性推出,再利用平行线的性质进行求解;(2)猜测,根据平分,推导出,再根据、平分,通过等量代换求解;(3)分两种情况进行讨论,即当与,充分利用平行线的性质、角平分线的性质、等量代换的思想进行求解.【详解】(1)过点作,,,,.(2)根据题意,补全图形如下:猜测,由(1)可知:,平分,,,,,又平分,,,.(3)①如图1,,由(2)可知:,,,,,,,,,,又平分,,;②如图2,,(同①);若,则有,又,,,,综上所述:或,故答案是:或.【点睛】本题考查了平行线的性质、角平分线、三角形内角和定理、垂直等相关知识点,解题的关键是掌握相关知识点,作出适当的辅助线,通过分类讨论及等量代换进行求解.8.(1)150°;(2)∠BOM-∠CON=30°;(3)9秒或27秒,6秒或24秒【分析】(1)根据邻补角的定义求出∠AOC=120°,再根据角平分线的定义求出∠COM,然后根据∠CON=∠CO解析:(1)150°;(2)∠BOM-∠CON=30°;(3)9秒或27秒,6秒或24秒【分析】(1)根据邻补角的定义求出∠AOC=120°,再根据角平分线的定义求出∠COM,然后根据∠CON=∠COM+90°解答;(2)用∠BOM和∠CON表示出∠BON,然后列出方程整理即可得解.(3)分别分两种情况根据平行线的性质和旋转的性质求出旋转角,然后除以旋转速度即可得解.【详解】解:(1)∵∠AOC=120°,∴∠BOC=60°,又∵OM平分∠AOC,∴∠COM=∠BOC=60°,∴∠CON=∠COM+90°=150°;(2)∵∠MON=90°,∠BOC=60°,∴∠BON=90°-∠BOM,∠BON=60°-∠CON,∴90°-∠BOM=60°-∠CON,∴∠BOM-∠CON=30°,故∠BOM与∠CON之间的数量关系为:∠BOM-∠CON=30°.(3)∵∠OMN=30°,∴∠N=90°-30°=60°,∵∠BOC=60°,∴当ON在直线AB上时,MN∥OC,如图,则旋转角为90°或270°,∵每秒顺时针旋转10°,∴时间为9秒或27秒;当直线ON恰好平分锐角∠BOC时,则旋转角为90°-30°=60°或90°+150°=240°,∵每秒顺时针旋转10°,∴时间为6秒或24秒.【点睛】本题考查了旋转的性质,角平分线的定义,平行线的性质,读懂题目信息并熟练掌握各性质是解题的关键,难点在于(3)要分情况讨论.9.(1)35,35,平行;(2)∠FMN+∠GHF=180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB∥CD;(2解析:(1)35,35,平行;(2)∠FMN+∠GHF=180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB∥CD;(2)先根据内错角相等证GH∥PN,再根据同旁内角互补和等量代换得出∠FMN+∠GHF=180°;(3)作∠PEM1的平分线交M1Q的延长线于R,先根据同位角相等证ER∥FQ,得∠FQM1=∠R,设∠PER=∠REB=x,∠PM1R=∠RM1B=y,得出∠EP

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论