河北省石家庄第二中学2025-2026学年高一上数学期末联考试题含解析_第1页
河北省石家庄第二中学2025-2026学年高一上数学期末联考试题含解析_第2页
河北省石家庄第二中学2025-2026学年高一上数学期末联考试题含解析_第3页
河北省石家庄第二中学2025-2026学年高一上数学期末联考试题含解析_第4页
河北省石家庄第二中学2025-2026学年高一上数学期末联考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省石家庄第二中学2025-2026学年高一上数学期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,以为直径在正方形内部作半圆,为半圆上与不重合的一动点,下面关于的说法正确的是A.无最大值,但有最小值B.既有最大值,又有最小值C.有最大值,但无最小值D.既无最大值,又无最小值2.已知幂函数的图象过点(2,),则的值为()A B.C. D.3.已知函数的图象是一条连续不断的曲线,且有如下对应函数值表:1245612313615.55210.88-52.488-232.064在以下区间中,一定有零点的是()A.(1,2) B.(2,4)C.(4,5) D.(5,6)4.若函数在区间上存在零点,则实数的取值范围是A. B.C. D.5.已知集合,,若,则实数a值的集合为()A. B.C. D.6.下列函数中,满足对定义域内任意实数,恒有的函数的个数为()①②③④A.1个 B.2个C.3个 D.4个7.已知命题p:∃n∈N,2n>2021.那么A.∀n∈N,2n≤2021 B.∀n∈NC.∃n∈N,2n≤2021 D.∃n∈N8.下列函数中,在其定义域内单调递减的是()A. B.C. D.9.已知为等差数列,为的前项和,且,,则公差A. B.C. D.10.与2022°终边相同的角是()A. B.C.222° D.142°二、填空题:本大题共6小题,每小题5分,共30分。11.____________12.在中,若,则的形状一定是___________三角形.13.记函数的值域为,在区间上随机取一个数,则的概率等于__________14.函数的部分图象如图所示.若,且,则_____________15.函数的单调增区间是______16.在国际气象界,二十四节气被誉为“中国的第五大发明”.一个回归年定义为从某年春分到次年春分所经历的时间,也指太阳直射点回归运动的一个周期.某科技小组以某年春分为初始时间,统计了连续400天太阳直射点的纬度平均值(太阳直射北半球时取正值,直射南半球时取负值).设第x天时太阳直射点的纬度平均值为y,该小组通过对数据的整理和分析,得到y与x近似满足,则一个回归年对应的天数约为______(精确到0.01);已知某年的春分日是星期六,则4个回归年后的春分日应该是星期______.()三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设全集,集合,(1)当时,求;(2)若,求实数的取值范围18.如图,在平面直角坐标系中,为单位圆上一点,射线绕点按逆时针方向旋转后交单位圆于点,点的横坐标为(1)求的表达式,并求(2)若,求的值19.(Ⅰ)设x,y,z都大于1,w是一个正数,且有logxw=24,logyw=40,logxyzw=12,求logzw(Ⅱ)已知直线l夹在两条直线l1:x-3y+10=0和l2:2x+y-8=0之间的线段中点为P(0,1),求直线l的方程20.已知函数.(1)若函数的定义域为,求的取值范围;(2)设函数.若对任意,总有,求的取值范围.21.某企业为打入国际市场,决定从A、B两种产品中只选择一种进行投资生产.已知投资生产这两种产品的有关数据如下表:(单位:万美元)项目类别年固定成本每件产品成本每件产品销售价每年最多可生产的件数A产品20m10200B产品40818120其中年固定成本与年生产的件数无关,m为待定常数,其值由生产A产品的原材料价格决定,预计m∈[6,9],另外,年销售x件B产品时需上交0.05x2万美元的特别关税.假设生产出来的产品都能在当年销售出去(1)写出该厂分别投资生产A、B两种产品的年利润y1,y2与生产相应产品的件数x之间的函数关系并指明其定义域;(2)如何投资最合理(可获得最大年利润)?请你做出规划

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】设正方形的边长为2,如图建立平面直角坐标系,则D(-1,2),P(cosθ,sinθ),(其中0<θ<π),∵cosθ∈(-1,1),∴∈(4,16).故选D.点睛:本题考查了向量的加法及向量模的计算,利用建系的方法,引入三角函数来解决使得思路清晰,计算简便,遇见正方形,圆,等边三角形,直角三角形等特殊图形常用建系的方法.2、A【解析】令幂函数且过(2,),即有,进而可求的值【详解】令,由图象过(2,)∴,可得故∴故选:A【点睛】本题考查了幂函数,由幂函数的形式及其所过的定点求解析式,进而求出对应函数值,属于简单题3、C【解析】由表格数据,结合零点存在定理判断零点所在区间.【详解】∵∴,,,,又函数的图象是一条连续不断的曲线,由函数零点存在定理可得在区间上一定有零点故选:C.4、C【解析】由函数的零点的判定定理可得f(﹣1)f(1)<0,解不等式求得实数a的取值范围【详解】由题,函数f(x)=ax+1单调,又在区间(﹣1,1)上存在一个零点,则f(﹣1)f(1)<0,即(1﹣a)(1+a)<0,解得a<﹣1或a>1故选C【点睛】本题主要考查函数的零点的判定定理的应用,属于基础题5、D【解析】,可以得到,求出集合A的子集,这样就可以求出实数值集合.【详解】,的子集有,当时,显然有;当时,;当时,;当,不存在符合题意,实数值集合为,故选:D.【点睛】本题考查了通过集合的运算结果,得出集合之间的关系,求参数问题.重点考查了一个集合的子集,本题容易忽略空集是任何集合的子集这一结论.6、A【解析】根据因为函数满足对定义域内任意实数,恒有,可得函数的图象是“下凸”,然后由函数图象判断.【详解】因为函数满足对定义域内任意实数,恒有,所以函数的图象是“下凸”,分别作出函数①②③④的图象,由图象知,满足条件的函数有③一个,故选:A7、A【解析】根据含有一个量词命题否定的定义,即可得答案.【详解】命题p:∃n∈N,2n>2021的否定¬p为:∀n∈N,故选:A8、B【解析】根据函数的单调性确定正确选项【详解】在上递增,不符合题意.在上递减,符合题意.在上有增有减,不符合题意.故选:B9、A【解析】分析:先根据已知化简即得公差d.详解:由题得4+4+d+4+2d=6,所以d=.故答案为A.点睛:本题主要考查等差数列的前n项和和等差数列的通项,意在考查学生对这些基础知识的掌握水平.10、C【解析】终边相同的角,相差360°的整数倍,据此即可求解.【详解】∵2022°=360°×5+222°,∴与2022°终边相同的角是222°.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】,故答案为.考点:对数的运算.12、等腰【解析】根据可得,利用两角和的正弦公式展开,再逆用两角差的正弦公式化简,结合三角形内角的范围可得,即可得的形状.【详解】因,,所以,即,所以,可得:,因为,,所以所以,即,故是等腰三角形.故答案为:等腰.13、【解析】因为;所以的概率等于点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率14、##【解析】根据函数的图象求出该函数的解析式,结合图象可知,点、关于直线对称,进而得出.【详解】由图象可知,,即,则,此时,,由于,所以,即.,且,由图象可知,,则.故答案为:.15、【解析】先求出函数定义域,再换元,利用复合函数单调性的求法求解【详解】由,得,所以函数的定义域为,令,则,因为在上递增,在上递减,而在上为增函数,所以在上递增,在上递减,故答案为:16、①.365.25②.四【解析】(1)利用周期公式求出一个回归年对应的天数;(2)先计算出4个回归年经过的天数,再根据周期即可求解.【详解】因为周期,所以一个回归年对应的天数约为365.25;一个回归年对应的天数约为365.25,则4个回归年经过的天数为.因为,且该年春分日是星期六,所以4个回归年后的春分日应该是星期四.故答案为:365.25;四.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2)【解析】(1)由得到,然后利用集合的补集和交集运算求解.(2)化简集合,根据,分和两种情况求解.【详解】(1)当时,或,或.(2),若,则当时,,不成立,解得,的取值范围是.18、(1),(2)【解析】(1)由点的坐标可求得,再由三角函数的定义可求出,从而可求出的值,(2)由题意可得,则可求得,从而利用三角函数恒等变换公式可求得结果【小问1详解】因为,所以,由三角函数定义,得所以【小问2详解】因为,所以,因为,所以所以19、(Ⅰ)60;(Ⅱ)x+4y-4=0【解析】(Ⅰ)logxw=24,logyw=40,logxyzw=12,将对数式改写指数式,得到.进而得出.问题得解(Ⅱ)设直线与的交点分别为,.可得,由的中点为,可得,.将,代入即可求解【详解】(Ⅰ)∵logxw=24,logyw=40,logxyzw=12,将对数式改写为指数式,得到x24=w,y40=w,(xyz)12=w从而,z12===,那么w=z60,∴logzw=60(Ⅱ)设直线l与l1,l2的交点分别为A(x1,y1),B(x2,y2)则

(*)∵A,B的中点为P(0,1),∴x1+x2=0,y1+y2=2.将x2=-x1,y2=2-y1代入(*)得,解之得,,所以,kAB==-,所以直线l的方程为y=-x+1,即x+4y-4=0【点睛】本题考查了指数与对数的互化、直线交点、中点坐标公式,考查了推理能力与计算能力,属于基础题20、(1);(2)【解析】(1)等价于在上恒成立.解得的取值范围是;(2)等价于在上恒成立,所以的取值范围是.试题解析:(1)函数的定义域为,即在上恒成立.当时,恒成立,符合题意;当时,必有.综上,的取值范围是.(2)∵,∴.对任意,总有,等价于在上恒成立在上恒成立.设,则(当且仅当时取等号).,在上恒成立.当时,显然成立当时,在上恒成立.令,.只需.∵在区间上单调递增,∴.令.只需.而,且∴.故.综上,的取值范围是.21、(1),且;,且;(2)答案见解析.【解析】(1)设年销售量为件,由题意可得,,注意根据实际情况确定定义

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论