云南省临沧市临翔区元江民族中学2025-2026学年高二数学第一学期期末考试试题含解析_第1页
云南省临沧市临翔区元江民族中学2025-2026学年高二数学第一学期期末考试试题含解析_第2页
云南省临沧市临翔区元江民族中学2025-2026学年高二数学第一学期期末考试试题含解析_第3页
云南省临沧市临翔区元江民族中学2025-2026学年高二数学第一学期期末考试试题含解析_第4页
云南省临沧市临翔区元江民族中学2025-2026学年高二数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省临沧市临翔区元江民族中学2025-2026学年高二数学第一学期期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在空间四边形中,,,,且,则()A. B.C. D.2.已知双曲线的左右焦点分别为、,过作的一条渐近线的垂线,垂足为,若的面积为,则的渐近线方程为A. B.C. D.3.如图,已知最底层正方体的棱长为a,上层正方体下底面的四个顶点是下层正方体上底面各边的中点,依此方法一直继续下去,则所有这些正方体的体积之和将趋近于()A. B.C. D.4.如图①所示,将一边长为1的正方形沿对角线折起,形成三棱锥,其主视图与俯视图如图②所示,则左视图的面积为()A. B.C. D.5.下列事件:①连续两次抛掷同一个骰子,两次都出现2点;②某人买彩票中奖;③从集合中任取两个不同元素,它们的和大于2;④在标准大气压下,水加热到90℃时会沸腾.其中是随机事件的个数是()A.1 B.2C.3 D.46.阅读程序框图,该算法的功能是输出A.数列的第4项 B.数列的第5项C.数列的前4项的和 D.数列的前5项的和7.已知直线m经过,两点,则直线m的斜率为()A.-2 B.C. D.28.已知抛物线C:,焦点为F,点到在抛物线上,则()A.3 B.2C. D.9.已知焦点在轴上的双曲线的一条渐近线方程为,则该双曲线的离心率为()A. B.C.2 D.10.若数列满足,则()A. B.C. D.11.已知,,则下列结论一定成立的是()A. B.C. D.12.下列命题正确的是()A经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面二、填空题:本题共4小题,每小题5分,共20分。13.如果椭圆上一点P到焦点的距离等于6,则点P到另一个焦点的距离为____14.已知双曲线的焦点,过F且斜率为1的直线与双曲线有且只有一个交点,则双曲线的方程为_________15.若平面内两条直线,平行,则实数______16.已知定义在R上的函数的导函数,且,则实数的取值范围为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知正三棱柱底面边长为,是上一点,是以为直角顶点的等腰直角三角形,(1)证明:是的中点;(2)求二面角的大小18.(12分)在数列中,,且.(1)证明;数列是等比数列.(2)若,求数列的前n项和.19.(12分)已知等比数列的前项和为,且.(1)求数列的通项公式;(2)令,求数列的前项和.20.(12分)已知为数列的前n项和,,且,,其中为常数.(1)求证:数列为等差数列;(2)是否存在,使得是等差数列?并说明理由.21.(12分)已知等差数列的前三项依次为,4,,前项和为,且.(1)求的通项公式及的值;(2)设数列的通项,求证是等比数列,并求的前项和.22.(10分)已知椭圆左右焦点分别为,,离心率为,P是椭圆上一点,且面积的最大值为1.(1)求椭圆的方程;(2)过的直线交椭圆于M,N两点,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用空间向量的线性运算即可求解.【详解】..故选:A.2、D【解析】求得,根据的面积列方程,由此求得,进而求得双曲线的渐近线方程.【详解】依题意,双曲线的一条渐近线为,则,所以,所以,所以.所以双曲线渐近线方程为.故选:D【点睛】本小题主要考查双曲线渐近线的有关计算,属于中档题.3、D【解析】由已知可判断出所有这些正方体的体积构成首项为,公比为的等比数列,然后求和可得答案.【详解】最底层上面第一个正方体的棱长为,其体积为,上面第二个正方体的棱长为,其体积为,上面第三个正方体的棱长为,其体积为,所有这些正方体的体积构成首项为,公比为的等比数列,其前项和为,当,,所以所有这些正方体的体积之和将趋近于.故选:D.4、A【解析】由视图确定该几何体的特征,即可得解.【详解】由主视图可以看出,A点在面上的投影为的中点,由俯视图可以看出C点在面上的投影为的中点,所以其左视图为如图所示的等腰直角三角形,直角边长为,于是左视图的面积为故选:A.5、B【解析】因为随机事件指的是在一定条件下,可能发生,也可能不发生的事件,只需逐一判断4个事件哪一个符合这种情况即可【详解】解:连续两次抛掷同一个骰子,两次都出现2点这一事件可能发生也可能不发生,①是随机事件某人买彩票中奖这一事件可能发生也可能不发生,②是随机事件从集合,2,中任取两个元素,它们的和必大于2,③是必然事件在标准大气压下,水加热到时才会沸腾,④是不可能事件故随机事件有2个,故选:B6、B【解析】分析:模拟程序的运行,依次写出每次循环,直到满足条件,退出循环,输出A的值即可详解:模拟程序的运行,可得:

A=0,i=1执行循环体,,

不满足条件,执行循环体,不满足条件,执行循环体,不满足条件,执行循环体,不满足条件,执行循环体,满足条件,退出循环,输出A的值为31.观察规律可得该算法的功能是输出数列{}的第5项.所以B选项是正确的.点睛:模拟程序的运行,依次写出每次循环得到的A,i的值,当i=6时满足条件,退出循环,输出A的值,观察规律即可得解.7、A【解析】根据斜率公式求得正确答案.【详解】直线的斜率为:.故选:A8、D【解析】利用抛物线的定义求解.【详解】因为点在抛物线上,,解得,利用抛物线的定义知故选:D9、D【解析】由题意,化简即可得出双曲线的离心率【详解】解:由题意,.故选:D10、C【解析】利用前项积与通项的关系可求得结果.【详解】由已知可得.故选:C.11、B【解析】根据不等式的同向可加性求解即可.【详解】因为,所以,又,所以.故选:B.12、D【解析】由平面的基本性质结合公理即可判断.【详解】对于A,过不在一条直线上三点才能确定一个平面,故A不正确;对于B,经过一条直线和直线外一个点确定一个平面,故B不正确;对于C,空间四边形不能确定一个平面,故C不正确;对于D,两两相交且不共点的三条直线确定一个平面,故D正确.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、14【解析】根据椭圆的定义及椭圆上一点P到焦点的距离等于6,可得的长.【详解】解:根据椭圆的定义,又椭圆上一点P到焦点的距离等于6,,故,故答案:.【点睛】本题主要考查椭圆的定义及简单性质,相对简单.14、【解析】根据直线与双曲线只有一个交点可知直线与双曲线平行,由渐近线斜率可列出的齐次方程,利用齐次方程求解.【详解】直线与双曲线有且只有一个交点,且焦点,直线与双曲线渐近线平行,,即,,即,.则双曲线的方程为故答案为:15、-1或2【解析】根据两直线平行,利用直线平行的条件列出方程解得答案.【详解】∵,∴,解得或,经验证都符合题意,故答案为:-1或216、【解析】由题意可得在R上单调递增,再由,利用函数的单调性转化为关于的不等式求解【详解】定义在R上的函数的导函数,在R上单调递增,由,得,即实数的取值范围为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)根据正棱柱的性质,结合线面垂直的判定定理、直角三角形的性质、正三角形的性质进行证明即可;(2)根据线面垂直的判定定理和性质,结合二面角的定义进行求解即可.【小问1详解】证明:在正三棱柱中,平面,平面,则,又是以为直角顶点的等腰直角三角形,则,且,平面,故平面,而平面,所以,又为正三角形,所以为的中点;【小问2详解】在正中,取的中点为,则,又平面,则,且,平面,故平面,取的中点为,且的中点为,则,故平面,而平面,所以,在等腰直角中,取的中点为,则,,平面,所以平面,而平面,所以,故为二面角平面角,又,则,,所以在中,,即:,故二面角的大小为.:18、(1)证明见解析;(2).【解析】(1)根据递推公式,结合等差数列的定义、等比数列的定义进行证明即可;(2)运用裂项相消法进行求解即可.【小问1详解】∵,∴,又∵,∴,∴数列是首项为0,公差为1的等差数列,∴,∴,从而,∴数列是首项为2,公比为2的等比数列;【小问2详解】由(1)知,则,∴,∴.19、(1)(2)【解析】(1)根据得到,再结合为等比数列求出首项,进而求得数列的通项公式;(2)由(1)求得数列的通项公式,进而利用公式法即可求出【小问1详解】解:(1),,当时,,即,又,为等比数列,所以,,数列的通项公式为【小问2详解】(2)由(1)知,则,数列的前项和20、(1)详见解析;(2)存在时是等差数列,详见解析.【解析】(1)利用与的关系可得,再结合条件即证;(2)由题可得,,若是等差数列,可得,进而可求数列的通项公式,即证.【小问1详解】∵,∴,∴,又,∴,∴,∴数列为等差数列;【小问2详解】∵,,∴,又,∴,若是等差数列,则,即,解得,当时,由,∴数列的奇数项构成的数列为首项为1,公差为2的等差数列,∴,即,为奇数,∴数列的偶数项构成的数列为首项为2,公差为2的等差数列,∴,即,为偶数,综上可得,当时,,,故存在时,使数列是等差数列.21、(1),(2)证明见解析,【解析】(1)直接利用等差中项的应用求出的值,进一步求出数列的通项公式和的值;(2)利用等比数列的定义即可证明数列为等比数列,进一步求出数列的和.【小问1详解】等差数列的前三项依次为,4,,∴,解得;故首项为2,公差为2,故,前项和为,且,整理得,解得或-11(负值舍去).∴,k=10.【小问2详解】由(1)得:,故(常数),故数列是等比数列;∴.22、(1)(2)【解析】(1)依题意得到方程组,求出、、,即可求出椭圆方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论