湖北省黄石市2025-2026学年高一上学期期中考试数学试卷(含答案)_第1页
湖北省黄石市2025-2026学年高一上学期期中考试数学试卷(含答案)_第2页
湖北省黄石市2025-2026学年高一上学期期中考试数学试卷(含答案)_第3页
湖北省黄石市2025-2026学年高一上学期期中考试数学试卷(含答案)_第4页
湖北省黄石市2025-2026学年高一上学期期中考试数学试卷(含答案)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省黄石市2025-2026学年高一上学期期中考试数学试卷一、单选题1.命题“,”的否定是(

)A., B.,C., D.,2.已知集合,,则(

)A. B. C. D.3.已知集合,集合,则(

)A. B.C. D.4.已知实数,满足,,且,则的最小值为(

)A. B. C. D.95.已知定义在上的偶函数,且当时,单调递减,则关于的不等式的解集是(

)A. B.C. D.6.若,,则“”是“”的(

)A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件7.已知函数在区间上的最大值为,最小值为,则的值为(

)A.1 B. C. D.08.设函数的定义域为R,满足,且当时,.若对任意,都有,则m的取值范围是A. B.C. D.二、多选题9.下列命题正确的是(

)A.若,,则B.函数的定义域为C.与表示同一个函数D.“”是“”的充分不必要条件10.已知关于的不等式()的解集为,则下列结论正确的是(

)A. B.的最大值为C.的最大值为 D.的最小值为411.设函数,则(

)A.直线是曲线的对称轴B.若函数在上单调递减,则C.对,不等式总成立D.当时,有三、填空题12.已知幂函数在上单调递减,则.13.已知命题p:“,”是假命题,则实数的取值范围是.14.设是定义在上的单调函数,且,,则函数在区间上的值域为.四、解答题15.已知集合,.(1)若,求,;(2)若是成立的充分条件,求实数的取值范围.16.已知命题,,命题,.(1)当命题为真命题时,求实数的取值范围;(2)若命题和命题均为假命题,求实数的取值范围.17.以人工智能、航空航天、生物技术、光电芯片、信息技术、新材料、新能源、智能制造等为代表的高精尖科技,属于由科技创新构成的物理世界,是需要长期研发投入,持续积累才能形成的原创技术,具有极高技术门槛和技术壁垒,最近十年,我国一大批自主创新的企业都在打造自己的科技品牌.某高科技企业自主研发了一款具有自主知识产权的高级设备,并从2025年起全面发售.经测算,生产该高级设备每年需投入固定成本500万元,每生产百台高级设备需要另投入成本万元,且,每百台高级设备售价为80万元,假设每年生产的高级设备能够全部售出,且高级设备年产量最大为10000台.(1)求企业获得年利润(万元)关于年产量(百台)的函数关系式;(2)当年产量为多少时,企业所获年利润最大?并求最大年利润.18.已知函数是奇函数.(1)求实数的值;(2)判断在上的单调性,并利用函数单调性的定义加以证明;(3)解关于的不等式.19.我们知道,函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数.根据以比信息解决下列问题:(1)求函数图象的对称中心;(2)已知函数,写出图象的对称中心,并求的值.(3)若函数具有以下性质:①定义域为;②在定义域内单调递增;③,都有.当函数时,求使不等式成立的实数的取值范围.

参考答案1.D2.B3.C4.B5.C6.A7.A8.B9.AD10.AC11.BCD12.13.14.15(1)当时,,.或,.(2)由题意得,当时,,解得;当时,,解得,综上,实数的取值范围为或.16.(1)当命题为真命题时,当时,,,即实数的取值范围为.(2)当命题为真命题时,,解得或,故为假命题时,当为假命题时,.所以命题和命题均为假命题,,解得,所以实数的取值范围为.17.(1)当时,,当时,.所以企业获得年利润(万元)关于年产量(百台)的函数关系式为:.(2)当时,,故(百台)时,取得最大值为284万元;当时,,当且仅当时取等号,故当(百台)时,取最大值为350万元:由于,故当年产量为50(百台)时,最大年利润为350万元.18.(1)函数的定义域为且,由于为奇函数,其定义域关于原点对称,故,验证:当时,,此时,定义域为为奇函数.(2)当时,在上单调递减.证明如下:且,,,即.在上单调递减.(3)即.注意到的定义域为,结合的正负分情况讨论如下:①当时,等价于,即,整理得,故或,即或或.结合得或;②当时,等价于,即,整理得,故,即或,结合得.综上所述,不等式的解集为.19.(1)解:设函数的对称中心为,则函数为奇函数,令,因为是奇函数,则满足,解得,所以函数的对称中心为.(2)解:由函数,令,因为,所以为奇函数,根据的性质,可得的图象关于点成中心对称,则,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论