沪科版初中数学第22章《第22章 相似形》单元作业设计_第1页
沪科版初中数学第22章《第22章 相似形》单元作业设计_第2页
沪科版初中数学第22章《第22章 相似形》单元作业设计_第3页
沪科版初中数学第22章《第22章 相似形》单元作业设计_第4页
沪科版初中数学第22章《第22章 相似形》单元作业设计_第5页
已阅读5页,还剩58页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

沪科版第22章单元作业设计

目录

一、单元信息3

二、单元分析3

三、单元学习与作业目标5

四、单元作业设计思路5

五、课时作业

(1)相似多边形6

(2)比例线段8

(3)比例的性质10

(4)黄金分割12

(5)平行线分线段成比例定理及其推论15

(6)相似三角形判定的预备定理18

(7)相似三角形的判定定理120

(8)相似三角形的判定定理223

(9)相似三角形的判定定理326

(10)直角三角形相似的判定28

(11)相似三角形的判定方法与运用30

(12)相似三角形的性质133

(13)相似三角形的性质235

(14)图形的位似变换138

(15)图形的位似变换241

(16)综合与实践测量与误差44

六、单元质量检测作业47

七、附:各课时作业参考答案51

一、单元信息

基本学科年级学期教材版本单元名称

信息

数学九年级第一学期沪科版相似形

单元

组织方团自然单元口重组单元

序号课时名称对应教材内容

1相似多边形第22.1.KP63-64)

2比例线段第22.1.2(P65-66)

3比例的性质第22.1.3(P66-68)

4黄金分割第22.1.3(P68-69)

5平行线分线段成比例定理及其推论第22.1.5(P69-71)

6相似三角形判定的预备定理第22.2.1(P76-77)

相似三角形的判定定理1第22.2.2(P78-79)

时7

8相似三角形的判定定理2第22.2.3(P79-80)

相似三角形的判定定理第

信9322.2.4(P80-84)

10直角三角形相似的判定第22.2.5(P85-86)

息11相似三角形的判定方法与运用第22.2.6(P76-86)

12相似三角形的性质1第22.3.1(P87-88)

13相似三角形的性质2第22.3.2(P88-94)

14图形的位似变换1第22.4.1(P95-96)

1b图形的位似变换2第22.4.2(^7-101)

16综合与实践测量与误差第22.5(P102-104)

17单元质量检测第22.1—22.5(P63-104)

二、单元分析

(-)课标要求

《义务教育数学课程标准(2022年版)》中对本部分相关课程内容要求涉

及图形的变化方面,具体要求如下:

(1)了解比例的基本性质、线段的比、成比例的线段;通过建筑、艺术上的

实例了解黄金分割。

(2)通过具体实例认识图形的相似,了解相似多边形和相似比。

(3)掌握基本事实:两条直线被•组平行线所截,所得的对应线段成比例。

(4)了解相似三角形的判定定理:两角分别相等的两个三角形相似;两边成

比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似;斜边、直

角边对应成比例的两个直角三角形相似;了解相似三角形判定定理的证明。

(5)了解相似三角形的性质定理(这些定理不要求学生证明);相似三角形

对应线段的比等于相似比;面积比等于相似比的平方。

(6)了解图形的传似,知道利用位似可以将一个图形放大或缩小。

(7)会利用图形的相似解决一些简单的实际问题。

(-)教材分析

1.知识网络

2.内容分析

相似图形是日常生活中常见的图形。数学中相似关系的研究,是现实生活和生

产实际的需要,就是把它们抽象成为图形之间的相似关系,并研究相似形的定义,性

质、判定和应用,使之上升为理论,反过来又为实践服务,在研究三角形的全等,

即“形状相同,大小相等”的基础上,现要进一步研究两个平面图形的“形状相

同,大小可以不一样”的图形的性质,即相似。全等和相似是平面几何中研究直线

形性质的两个重要方面,全等形是相似比为1的特殊相似形,相似形则是全等形的推

广。因而学习相似形要随时与全等形作比较、明确它们之间的联系与区别;相似形

的讨论又是以全等形的有关定理为基础,学好相似形也为学习圆的有关性质和三角

函数知识作了必要的准备和重要工具,在平面儿何中,相似形是承上启下的关键内

容。

本章作业设计分成17课时。其中比例线段5课时,相似三角的判定6课时,相似

三角形的性质2课时,图形的位似变换2课时,综合与实践一测量与误差1课时,单元

质量检测1课时。每课时作业分基础性作业和发展性作业,作业整体由易到难,成阶

梯分布,把复杂问题化为简单问题,把•般问题化为特殊问题,符合学生认知规

律,让不同层次的学生都能得到充分的锻炼。

(三)学情分析

学习“相似”这一章时,学生处于推理论证方法的进一步巩固和提高的阶段,

要求学生能熟练地用综合法证明命题,熟悉探索法的推理过程.首先,对于相似三角

形的相关判定定理,要求学生自己进行探索求证;为了巩固并提高学生的推理论证

能力,本章的定理证明中,除了一些采用了探索式的证明方法,其他都采用了规范

的证明方法.这样既对激发学生的学习兴趣,活跃学生的思维,发展学生的思维能力

有好处,又启发和引导学生在熟悉“规范证明”的基础上,推理论证能力有所提高

和发展。

这部分内容题目相对以前比较复杂,要学生综合应用以前学过的知识,教学时

应注意多帮助学生复习已有的知识,加强解题思路的分析,帮助学生树立已知与未

知、简单与复杂、特殊与一般在一定条件下可以转化的思想,使学生学会把未知化

为己知,把复杂问题化为简单问题,把一般问题化为特殊问题的思考方法.通过这一

章对于学生推理证明的训练,进一步提高学生逻辑思维能力和分析解决实际问题的

能力。

在学习本章之前,我们已经研究过图形的全等变换,了解“全等”是图形的一

种关系,“相似”也是图形间的一种相互关系。与“全等”不同,“相似”指这两

个图形形状相同,大小不一定相等,其中一个图形可以看成是另一个图形按一定比

例放大或缩小而成的,这种变换是相似变换。当放缩比为1时,这两个图形就是全等

的。由此可见全等是相似的一种特殊情况。在学习相似形的判定和性质时,可以类

比全等的判定和性质,同时要注意他们的区别。

在物理学中,在建筑设计、测曷、绘图等许多方面,都要用到相似的有关知识。学好

本章内容对于学生今后从事实际工作具有重要作用。

三、单元学习目标与作业目标

1.单元学习目标

(1)了解比例的基本性质,了解线段的比、成比例线段,了解黄金分割;

(2)通过具体实例认识图形的相似,探索相似图形的性质,理解相似多边形对应

角相等、对应边成比例、周长的比等于相似比、面积的比等于相似比的平方,探索

并掌握相似三角形的判理,并能利用这些性质和判定定理解决生活中的一些实际问

题;

(3)了解图形的位似,能够利用位似将一个图形放大或缩小,在同一直角坐标系

中,感受变换后点的坐标的变化;

(4)结合相似图形性质和判定方法的探索和证明,进一步培养学生的合情推理能

力,发展的逻辑思维能力和推理论证的表达能力;通过这一章的教学,进一步培养

学生综合运用知识力,运用学过的知识解决问题的能力。

2.单元作业目标

本章是初中数学重要内容之一,它是全等三角形性质的拓展,在圆中有着广泛

的应用。同时,相似三角形的性质也是解决有关实际问题的重要工具,根据课程标

准的要求考虑到九年级学生的年龄特点和心理水平,摒弃传统教学只重视结论而忽

略探索过程的思想,体现数学学习是数学探究的过程,制定本章作业目标。

(1)能说出比例的基本性质,能熟练实现比例式与等积式之间的互化。

(2)通过具体实例认识图形的相似,探索相似图形的性质,知道相似多边形和相

似比。

(3)掌握基本事实:两条直线被一组平行线所截,所得的对应线段成比例。(4)

探索并掌握相似三角形的判定定理:两角分别相等的两个三角形相似;两

边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似;会证明两

个直角三角形相似。

(5)能运用相似二角形的性质定理解决实际问题。

(6)叙述图形的位似,知道利用位似可以将一个图形放大或缩小。

(7)通过探索相似三角形的判定定理,体会类比方法在数学学习中的作月。

(8)进一步提高学生综合运用知识的能力,运用学过的知识解决问题的能力,

同时对学生进行辨证唯物主义世界观的教育。

(9)培养学生观察问题、分析问题、归纳问题及概括问题等能力。

四、单元作业设计思路

分层设计作业。每课时均设计“基础性作业”(面向全体,体现课标,题量依

据课时内容调节,一般3-4大题,要求学生必做)和“发展性作业”(体现个性化,

探究性、实践性,要求学生有选择的完成)。具体设计体系如下:

五、课时作业

第一课时相似多边形

作业1(基础性作业)

1.作业内容:

(1)如图,菱形A8C0与菱形AiBiCiDi相似吗?为什么?

(2)下列各组图形一定相似的是()

A.两个菱形B.两个矩形C.两个直角梯形D.两个正方形

(3)观察下面的图形(a)-(g),其中哪些是与图形(1)、(2)或(3)相似的?

2.时间要求(8分钟)

3.评价设计

作业评价表

等级

评价指标备注

ABC

A等,答案正确、过程正确。

B等,答案正确、过程有问题。

答题的准确性C等,答案不正确,有过程不完整;答案不准

确,过程错误、或无过程。

A等,过程规范,答案正确。

答题的规范性B等,过程不够规范、完整,答案正确。

C等,过程不规范或无过程,答案错误。

A等,解法有新意和独到之处,答案正确。

B等,解法思路有创新,答案不完整或错

解法的创新性误。

C等,常规解法,思路不清楚,过程复杂或

无过程。

AAA、AAB综合评价为A等;

综合评价等级ABB、BBB、AAC综合评价为B等;

其余情况综合评价为C等。

4.作业分析与设计意图

作业考查学生对相似形定义的理解与灵活运用,体会学以致用的思想,并培养

学生多角度思考、解决问题的习惯。其中第(1)题考查相似多边形的对应角相等的

知识,通过练习(1),(2)感受:判定两个多边形相似,必须同时满足下列两个条件:

对应角相等;对应边成比例,两者缺一不可。

作业2(发展性作业)

1.作业内容

(1)如图,矩形草坪长30m、宽20m,沿草坪四周有1m宽的环形小路,小路内外

边缘形成的两个矩形相似吗?说出你的理由.

(2)如图,四边形4BC0与四边形4BCO'相似,求边工、y的长度和角a的大小.

2.时间要求(10分钟)

3.评价设计

作业评价表

等级

评价指标备注

ABC

A等,答案正确、过程正确。

B等,答案正确、过程有问题。

答题的准确性C等,答案不正确,有过程不完整;答案不准

确,过程错误、或无过程。

A等,过程规范,答案正确。

答题的规范性B等,过程不够规范、完整,答案正确。

C等,过程不规范或无过程,答案错误。

A等,解法有新意和独到之处,答案正确。

解法的创新性B等,解法思路有创新,答案不完整或错误。

C等,常规解法,思路不清楚,过程复杂或无

过程。

AAA、AAB综合评价为A等;

综合评价等级ABB、BBB、AAC综合评价为B等;

其余情况综合评价为C等。

4.作业分析与设计意图

第1题让学生通过计算判定两个看上去差不多的矩形并不一定就相似,再次

巩固相似多边形定义中要满足的两个条件;第2题考查的是相似多边形的性质,

熟知相似多边形的友应边成比例,对应角相等是解答此题的关键。直接根据相似

多边形的对应边成比例求出x,y的值,对应角相等求出ND的度数,再根据四边

形内角和求出所求角的度数即可,用相似多边形的定义解决问题,学会学以致

用,发现所学知识的应用价值。

第二课时比例线段

作业1(基础性作业)

1.作业内容:

(1)一把矩形米尺,长1m,宽3cm,则这把米尺的长和宽的比为()

A.100:3B.1:3C.10:3D.1000:3

(2)下面四条线段是成比例线段的是()

A.a=1,b=2,c=3,d=4

B.Q=3,b=6,c=9,d=18

C.a=1,b=3,c=2,d=

D.a=1,b=2,c=4,d=6

(3)若a、b、c、d是成比例线段,其中Q=5CTH,b=2.5cm,c=10cm,则线段d

的长为()

A.2cmB.4cmC.ScmD.6cm.

(4)已知线段b=2,c=8,若线段a是线段b与c的比例中项,Ma=

(5)已知b=2,c=8,若a是b与c的比例中项,则。=

2.时间要求(8分钟)

3.评价设计

作业评价表

等级

评价指标备注

ABC

A等,答案正确、过程正确。

B等,答案正确、过程有问题。

答题的准确性C等,答案不正确,有过程不完整;答案不

准确,过程错误、或无过程。

A等,过程规范,答案正确。

答题的规范性B等,过程不够规范、完整,答案正确。

C等,过程不规范或无过程,答案错误。

A等,解法有新意和独到之处,答案正

确。

解法的创新性B等,解法思路有创新,答案不完整或错

误。

C等,常规解法,思路不清楚,过程复杂

或无过程。

AAA、AAB综合评价为A等;

综合评价等级ABB、BBB>AAC综合评价为B等;

其余情况综合评价为C等。

4.作业分析与设计意图

第1题在于让学生体会计算两个数量的比值时,要保持单位一致;第2,3题考查

成比例线段的定义,要注意成比例线段中四条线段是有顺序的这一特点;第4,5两题

考查比例中项的定义,注意区分线段的比例中项与数的比例中项的不同之处。

作业2(发展性作业)

1.作业内容

(1)已知2,2,4,如果再添加一个数,就得到这四个数成比例了,则添加的

数是()

A.2B.22或;C.22,42或80.22,:或4

(2)已知线段AB的长为4,点P为线段AB上一点,如果线段AP是线段BP与线段AB的

比例中项,那么线段AP的长为

2.时间要求(10分钟)

3.评价设计

作业评价表

等级

评价指标备注

ABC

A等,答案正确、过程正确。

B等,答案正确、过程有问题。

答题的准确性C等,答案不正确,有过程不完整;答案不准

确,过程错误、或无过程。

A等,过程规范,答案正确。

答题的规范性B等,过程不够规范、完整,答案正确。

C等,过程不规范或无过程,答案错误。

A等,解法有新意和独到之处,答案正确。

解法的创新性B等,解法思路有创新,答案不完整或错

误。

C等,常规解法,思路不清楚,过程复杂或

无过程。

AAA、AAB综合评价为A等;

综合评价等级ABB、BBB、AAC综合评价为B等;

其余情况综合评价为C等。

4.作业分析与设计意图

作业第1题,四条线段成比例,不知道添加的是第几比例项,需分类讨论,考

察同学们对成比例线段的综合运用。巩固并加深成比例线段理解并会灵活运用;第

2题,从知识的角度看,检验学生对线段的比例中项的理解和灵活运用。从育人的角

度看,培养学生分类讨论思想,多角度思考、解决问题的能力。

第三课时比例的性质

作业1(基础性作业)

1.作业内容:

(1)如果线段展线段&b由勺第四比例项,其中a=2cm,b=4cm,c=5cm,则

d=cm.

(2)已知0点是正方形ABCD的两条对角线的交点,贝必0:AB:AC=.

(3)若。/二3(从样0),贝I」"。二

b(1b+d

(4)已知3=2,那么下列式子成立的是()

xy

A.3x=2yB.xy=6

C.x-2D.y=2

33

(5)把ab=।cd写成比例式,不正确的写法是()

2

A.J"B.T

c2b2cb

C.2a=dD.c=〃

chhd

(6)已知线段x,y满足(x+y):(x—y)=3:1,那么x:y等于()

A.3:1B.2:3

C.2:1D.3:2

2.时间要求(8分钟)

3.评价设计

作业评价表

等级

评价指标备注

ABC

A等,答案正确、过程正确。

B等,答案正确、过程有问题。

答题的准确性C等,答案不正确,有过程不完整;答案不准

确,过程错误、或无过程。

A等,过程规范,答案正确。

答题的规范性B等,过程不够规范、完整,答案正确。

C等,过程不规范或无过程,答案错误。

A等,解法有新意和独到之处,答案正确。

解法的创新性B等,解法思路有创新,答案不完整或错误。

C等,常规解法,思路不清楚,过程复杂或无

过程。

AAA、AAB综合评价为A等;

综合评价等级ABB、BBB.AAC综合评价为B等;

其余情况综合评价为C等。

4.作业分析与设计意图

第(1)(2))是成比例线段的应用;第(3)题是等比性质的应用;第(4)(5)题

比例的多种形式的相互转化,注重解题方法的运用;第(6)题是比例的运算,从知

识的角度巩固所学知识点。

作业2(发展性作业)

卜,出超金丰0x+y_z+x_y+z_卜、|*的信

--—K,的值.

zyx

(2)如图,在△ABC中,一,AB=12,AE=6,EC=4.

DBEC

①求AD的长;

DB

②求证:

ABAC

2.时间要求(12分钟)

3.评价设计

作业评价表

等级

评价指标备注

ABC

A等,答案正确、过程正确。

B等,答案正确、过程有问题。

答题的准确性C等,答案不正确,有过程不完整;答案不

准确,过程错误、或无过程。

A等,过程规范,答案正确。

答题的规范性B等,过程不够规范、完整,答案正确。

C等,过程不规范或无过程,答案错误。

A等,解法有新意和独到之处,答案正

解法的创新性确。

B等,解法思路有创新,答案不完整或错

误。

C等,常规解法,思路不清楚,过程复杂

或无过程。

AAA、AAB综合评价为A等;

综合评价等级ABB、BBB、AAC综合评价为B等;

其余情况综合评价为C等。

4.作业分析与设计意图

第(1)题分①当x+y+z#0时,利用等比性质解答,②当x+y+z=O时,

用一个字母表示出另两个字母的和,然后求解即可,本题主要考查了等比性质的应

用,比较简单,熟记性质是解题的关键,根据等比性质的分母的情况要注意分情况

讨论;第(2)题是根据课本67页例1改编的一道题,是比例性质在几何中的应用,

要求学生能灵活运用比例的合比性质。

第四课时黄金分割

作业1(基础性作业)

1.作业内容:

(1)如图,若点P是AB的黄金分割点,则线段AP、PB、AB满足关系式,即

PB是与的比例中项.

(2)黄金矩形的宽与长的比大约为(精确到0.001).

(3)有以下命题:

①如果线段d是线段a,b,c的第四比例项,则有

h(1

②如果点C是线段AB的中点,那么AC是AB、BC的比例中项

③如果点C是线段AB的黄金分割点,且AOBC,那么AC是AB与BC的比例中项

④如果点C是线段AB的黄金分割点,AOBC,且AB=2,则AC=-1

其中正确的判断有()

A.1个B.2个

C.3个D.4个

(4)主持人站在舞台的黄金分割点处最自然得体,如果舞台AB长为20米,一个主持人

现站在舞台AB的黄金分割点C处,则下列结论一定正确的是()

①AB:AC=AC:BC;②AC七6.18米;

③AC=10(5T)米;④BC=10(3-5)米或10(5-1)*.

A.①©③④B.①②③

C.①③D.©

2.时间要求(10分钟)

3.评价设计

作业评价表

等级

评价指标备注

ABC

A等,答案正确、过程正确。

B等,答案正确、过程有问题。

答题的准确性C等,答案不正确,有过程不完整;答案不准

确,过程错误、或无过程。

A等,过程规范,答案正确。

答题的规范性B等,过程不够规范、完整,答案正确。

C等,过程不规范或尢过程,答案错误。

A等,解法有新意和独到之处,答案正确。

解法的创新性B等,解法思路有创新,答案不完整或错误。

C等,常规解法,思路不清楚,过程复杂或无

过程。

AAA、AAB综合评价为A等;

综合评价等级ABB、BBB、AAC综合评价为B等;

其余情况综合评价为C等。

4.作业分析与设计意图

第(1)-(3)题是从知识的角度复习黄金分割,第(4)题是从应用的角度巩固

黄金分割。让学生感受的黄金分割在生活实际中的应用,从而增强学好数学的信心

并培养学习数学的兴趣C

作业2(发展性作业)

1.作业内容

(1)如图是著名画家达芬奇的名画《蒙娜丽莎》.画中的脸部被包在矩形鹿内,

点混血勺黄金分割点,加睹力庆28则鹿为()

A.(5+1)。

C.(3-5)a

(2)在人体躯和身高的比例上,肚脐是理想的黄分割点,即(下半

身长与身高)比例越接近0.618越给人以美感,某女士身高165cm,下

半身长(脚底到肚脐的高度)与身高的比值是0.60,为尽可能达到匀称的

效果,她应该选择约多少厘米的高跟鞋看起来更美.(结果保留整数)

(3)以长为2的线段/两边作正方形物取邠中点户;连结

m在徽延长线上取点R使磨刃以衲边作正方形加、点MMt,如图.

①求加御勺长.

②点M是线段40的黄金分割点吗?请说明理由。

2.时间要求(10分钟)

3.评价设计

作业评价表

等级

评价指标备注

ABC

A等,答案正确、过程正确。

B等,答案正确、过程有问题。

答题的准确性C等,答案不正确,有过程不完整;答案不准

确,过程错误、或无过程。

A等,过程规范,答案正确。

答题的规范性B等,过程不够规范、完整,答案正确。

C等,过程不规范或无过程,答案错误。

A等,解法有新意和独到之处,答案正确。

解法的创新性B等,解法思路有创新,答案不完整或错误。

C等,常规解法,思路不清楚,过程复杂或无

过程。

AAA、AAB综合评价为A等;

综合评价等级ABB、BBB、AAC综合评价为B等:

其余情况综合评价为C等。

4.作业分析与设计意图

第(1)(2)题是黄金分割在生活中应用,体会数学是有用的。在蒙娜丽莎的名画中

感受黄金分割带来的艺术美,在第二题高跟鞋鞋跟高度的选择上,体会黄金分割在生

活中的广泛应用,培养学生用所学数学知识解决生活中问题的习惯,提高学习数学

的兴趣;第⑶题是黄金分割的综合应用。

第五课时平行线分线段成比例及其推论

作业1(基础性作业)

1.作业内容:

(1)如图,a//b//c,乜=1,OF=12,则80的长为()

CE2

A.2B.3

C.4D.6

(2)如图,己知aABC中,DE/7BC,则下列等式中不成立的是()

(A)AD:AB=AE:AC

(B)AD:DB=AE:EC

(C)AD:DB=DE:BC

(D)AD:AB=DE:BC

(3)如图,直线乙〃/〃/乙,另两条直线分别交ZI仔点A,B,C及点D,E,F,

且AB=3,DE=4,EF=2,则下列等式正确的是().

A.BC:DE=1:2B.BC:DE=2:3.C.BC:DE=3:8D.BC:DE=1:6

2.时间要求(6分钟)

3.评价设计

作业评价表

等级

评价指标备注

ABC

A等,答案正确、过程正确。

B等,答案正确、过程有问题。

答题的准确性C等,答案不正确,有过程不完整;答案不

准确,过程错误、或无过程。

A等,过程规范,答案正确。

答题的规范性B等,过程不够规范、完整,答案正确。

C等,过程不规范或无过程,答案错误。

A等,解法有新意和独到之处,答案正

确。

解法的创新性B等,解法思路有创新,答案不完整或错

误。

C等,常规解法,思路不清楚,过程复杂

或无过程。

AAA、AAB综合评价为A等;

综合评价等级ABB、BBB、AAC综合评价为B等;

其余情况综合评价为C等。

4.作业分析与设计意图

作业第1题是平行线分线段成比例定理在三角形中的运用,考查学生的几何直观

能力与知识迁移能力。第2题是平行线分线段成比例定理与线段的比结合题,先用定

理求线段BC,再求BC与其他线段的比。考察学生的凡何直观能力,和逻辑推理能力。

作业2(发展性作业)

1.作业内容

(1)如图,a〃b〃c,直线m、ri与a、b、c分别相交于

点4、B、。和点0、E、F.

①若力8=3,BC=5,DE=4,求EF的长;

②若48:BC=2:5,DF=10,求E尸的长

(2)如图,在中,DE//BC,NADE=/EFC,

ADtBD=5:3,CF=6.求DE的长.

2.时间要求(10分钟)

3.评价设计

作业评价表

等级

评价指标备注

ABC

A等,答案正确、过程正确。

B等,答案正确、过程有问题。

答题的准确性C等,答案不正确,有过程不完整;答案不淮

确,过程错误、或无过程。

A等,过程规范,答案正确。

答题的规范性B等,过程不够规范、完整,答案正确。

C等,过程不规范或无过程,答案错误。

A等,解法有新意和独到之处,答案正确。

解法的创新性B等,解法思路有创新,答案不完整或错误。

C等,常规解法,思路不清楚,过程复杂或无过

程。

AAA、AAB综合评价为A等;

综合评价等级ABB、BBB、AAC综合评价为B等;

其余情况综合评价为C等。

4.作业分析与设计意图

第(1)题考查了平行线分线段成比例,熟练掌握定理是解题的关键.根据平行

线分线段成比例定理列方程即可得到结论,本题考查了平行线分线段成比例的性

质、平行线的性质以及平行四边形的判定与性质,根据平行线分线段成比例的性

质,求出8F=10是解题的关键.由0E〃8C可得出乙40£=48,结合/40E=

△EFC可得出=进而可得出BD〃E/,结合可证出四边形BDE尸为

平行四边形,根据平行四边形的傥质可得出OE=B/,由OE〃BC可得出

奶==5,根据力可得出裾=RF=5,进而可得O"=10,即可求出。£的长

DBEC3ECFC3

度.作业评价时要关注学生对定理的运用是否合理,推理的思路是否清晰和书写格

式是否规范,解题思路是否创新等方面作出评价。

第六课时22.2相似三角形的判定(一)

作业1(基础性作业)

1.作业内容:

(1)阅读课本回答下列问题:

若△ABCS/XDFE,则—=(_)=—,ZA=,ZB=,ZC=.

()bE()

(2)于三角形一边的直线与其他两边(或)相交,截得的三角形

与原三角形

(3)如图,梯形ABCD中,DC//AB,对角线AC与BD交于点0,gAOAB^AOCD.

①写出对应边的比例式;

②写出所有相等的角;

③若AB=10,0B=8,0A=9,CD=6.求0D、0C的长

(4)如图,在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD于

EF

点F,则"C等于多少?

2.时间要求(10分钟)

3.评价设计

作业评价表

等级

评价指标备注

ABC

A等,答案正确、过程正确。

B等,答案正确、过程有问题。

答题的准确性C等,答案不正确,有过程不完整;答案不准

确,过程错误、或无过程。

A等,过程规范,答案正确。

答题的规范性B等,过程不够规范、完整,答案正确。

C等,过程不规范或无过程,答案错误。

A等,解法有新意和独到之处,答案正确。

解法的创新性B等,解法思路有创新,答案不完整或错误。

C等,常规解法,思路不清楚,过程复杂或无

过程。

AAA、AAB综合评价为A等;

综合评价等级ABB、BBB、AAC综合评价为B等;

其余情况综合评价为C等。

4.作业分析与设计意图

作业第(1)、(2)题,考查学生对书本内容的理解和相似三角形判定定理的灵

活运用,同时,体会学以致用的思想;第(3)题,让学生根据相似三角形写出比

例线段和对应角,和全等的表示方法一样,要把对应的顶点写在对应的位置上,从

育人的角度看,渗透类比的数学思想;第(4)题是考查学生对相似三角形“平行截

相似”的判定定理的理解与灵活运用,并培养学生多角度思考、解决问题的能力。

作业2(发展性作业)

1.作业内容

(1)如图,E是平行四边形ABCD的边BC的延长线上的一点,连接AE交CD于F,则图中

共有相似三角形对,请写出来.

(2)如图,DC/7AB,EF〃OB.

求证:△OCDS^PAE.

(3)如图,D、E分另ij是△ABC的边AB、AC上的点,DE〃BC,AB=7,AD=5,DE=1O,

求BC的长.

2.时间要求(10分钟)

3.评价设计

作业评价表

等级

评价指标备注

AEC

A等,答案正确、过程正确。

B等,答案正确、过程有问题。

答题的准确性C等,答案不正确,有过程不完整;答案不准确,过

程错误、或无过程。

A等,过程规范,答案正确。

答题的规范性B等,过程不够规范、完整,答案正确。

C等,过程不规范或无过程,答案错误。

A等,解法有新意加独到之处,答案正确。

解法的创新性B等,解法思路有创新,答案不完整或错误。

C等,常规解法,思路不清楚,过程复杂或无过

程。

AAA、AAB综合评价为A等;

综合评价等级ABB、BBB>AAC综合评价为B等;

其余情况综合评价为C等。

4.作业分析与设计意图

作业第(1)题,巩固并加深学生对相似三角形判定定理的理解,用来证明有关

三角形相似的问题;第(2)题,从知识的角度看,检验学生对相似三角形的判定

定理的灵活运用,在于引导学生根据问题条件和要求探究问题,能培养学生的逆向

思维能力;第(3)题是考查学生对相似三角形一边的平行线的判定定理的探索过

程,重视操作确认和逻诡推理的有机结合,培养学生多角度思考问题的能力。

第七课时22.2相似三角形的判定(二)

作业1(基础性作业)

1.作业内容:

(1)尝试画图,探究下列问题:

有一个角对应相等的两个三角形相似吗?

有两个角对应相等的两个三角形相似吗?

(2)在下列四个图形中,已知N1=N2,则四个图形中不一定有相似三角形的是

(3)在AABC中,NA=45。,/B=35。,则与△ABC相似的三角形的三个角的度数

分别为()

A.35°,45°,45°B,45°,105°,35°

C.45°,35°,110°D.45°,35°,100°

(4)如图,ZXABC和4ADE的边BC、AD相交于点0,且Nl=Z2=N3,点C在

DE上,求证:△ABCS2XADE.

2.时间要求(10分钟)

3.评价设计

作业评价表

等级

评价指标备注

ABC

A等,答案正确、过程正确。

B等,答案正确、过程有问题。

答题的准确性C等,答案不正确,有过程不完整;答案不准

确,过程错误、或无过程。

A等,过程规范,答案正确。

答题的规范性B等,过程不够规范、完整,答案正确。

C等,过程不规范或无过程,答案错误。

A等,解法有新意和独到之处,答案正确。

解法的创新性B等,解法思路有创新,答案不完整或错误。

C等,常规解法,思路不清楚,过程复杂或无过

程。

AAA、AAB综合评价为A等;

综合评价等级ABB、BBB.AAC综合评价为B等;

其余情况综合评价为C等。

4.作业分析与设计意图

作业第(1)题,考查学生对相似三角形判定定理1的理解,同时,体会学以致

用的思想;第(2)、(3)题,从知识的角度看,检验学生对相似三角形判定定理

1的理解,培养学生的逆向思维和科学精神,并培养学生多角度思考、解决问题的

习惯。第(4)题是考查学生对相似三角形判定定理1的理解,培养和提高学生利用

己学知识证明新命题的能力,渗透“转化”思想,培养学生的数学思维。

作业2(发展性作业)

1.作业内容

(1)如图,止方形ABCD中,AB=2,P是BC边上不与B、C重合的任意一点,

DQ±AP于Q,试证明△DAQs/XAPB,当点P在BC上变动时,

线段DQ也随之变化,设PA=x,DQ=y,求y与x之间的函

数关系式.

(2)加图,在△ARC中,AR=AC,ZA=36。,RD平分

ZABC,DE/7BC,那么图中与4ABC相似的三角形有哪

些?写出来并说明理由.

2.时间要求(10分钟)

3.评价设计

作业评价表

等级

评价指标

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论