苏教七年级下册期末解答题压轴数学试题经典解析_第1页
苏教七年级下册期末解答题压轴数学试题经典解析_第2页
苏教七年级下册期末解答题压轴数学试题经典解析_第3页
苏教七年级下册期末解答题压轴数学试题经典解析_第4页
苏教七年级下册期末解答题压轴数学试题经典解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

苏教七年级下册期末解答题压轴数学试题经典解析一、解答题1.如图,在中,是高,是角平分线,,.()求、和的度数.()若图形发生了变化,已知的两个角度数改为:当,,则__________.当,时,则__________.当,时,则__________.当,时,则__________.()若和的度数改为用字母和来表示,你能找到与和之间的关系吗?请直接写出你发现的结论.2.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出、、、之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出、、、之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在中,、分别平分和,请直接写出和的关系;②如图4,.(4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,,求和的度数.3.如图,在中,与的角平分线交于点.(1)若,则;(2)若,则;(3)若,与的角平分线交于点,的平分线与的平分线交于点,,的平分线与的平分线交于点,则.4.如果三角形的两个内角与满足,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在中,,是的角平分线,求证:是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在中,若,,,则是“准互余三角形”;②若是“准互余三角形”,,,则;③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,,为直线上两点,点在直线外,且.若是直线上一点,且是“准互余三角形”,请直接写出的度数.5.已知,,点为射线上一点.(1)如图1,写出、、之间的数量关系并证明;(2)如图2,当点在延长线上时,求证:;(3)如图3,平分,交于点,交于点,且:,,,求的度数.6.阅读材料:如图1,点是直线上一点,上方的四边形中,,延长,,探究与的数量关系,并证明.小白的想法是:“作(如图2),通过推理可以得到,从而得出结论”.请按照小白的想法完成解答:拓展延伸:保留原题条件不变,平分,反向延长,交的平分线于点(如图3),设,请直接写出的度数(用含的式子表示).7.如图1,点O为直线上一点,过点O作射线,使,将一把直角三角尺的直角顶点放在点O处,一边在射线上,另一边在直线的下方,其中.(1)将图1中的三角尺绕点O顺时针旋转至图2,使一边在的内部,且恰好平分,求的度数;(2)将图1中的三角尺绕点O顺时针旋转至图3,使在的内部,请探究与之间的数量关系,并说明理由.(3)将图1中三角尺绕点O按每秒的速度沿顺时针方向旋转一周,旋转过程中,在第_____秒时,边恰好与射线平行;在第_______秒时,直线恰好平分锐角.8.如图1,已知,是直线,外的一点,于点,交于点,满足.(1)求的度数;(2)如图2,射线从出发,以每秒的速度绕点按逆时针方向匀速旋转,当到达时立刻返回至,然后继续按上述方式旋转;射线从出发,以相同的速度绕点按顺时针方向旋转至后停止运动,此时射线也停止运动.若射线、射线同时开始运动,设运动时间为秒.①当射线平分时,求的度数;②当直线与直线相交所成的锐角是时,则________.9.如图1,将一副三角板与三角板摆放在一起;如图2,固定三角板,将三角板绕点A按顺时针方向旋转,记旋转角().(1)当________度时,;当________度时;(2)当的一边与的某一边平行(不共线)时,直接写出旋转角的所有可能的度数;(3)当,连接,利用图4探究的度数是否发生变化,并给出你的证明.10.如图1,在中,平分,平分.(1)若,则的度数为______;(2)若,直线经过点.①如图2,若,求的度数(用含的代数式表示);②如图3,若绕点旋转,分别交线段于点,试问在旋转过程中的度数是否会发生改变?若不变,求出的度数(用含的代数式表示),若改变,请说明理由:③如图4,继续旋转直线,与线段交于点,与的延长线交于点,请直接写出与的关系(用含的代数式表示).【参考答案】一、解答题1.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,.【分析】(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,.【分析】(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;(2)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,则前三问利用即可得出答案,第4问利用即可得出答案;(3)按照(2)的方法,将相应的数换成字母即可得出答案.【详解】(1)∵,,∴.∵平分,∴.∵是高,,,,.(2)当,时,∵,,∴.∵平分,∴.∵是高,,,;当,时,∵,,∴.∵平分,∴.∵是高,,,;当,时,∵,,∴.∵平分,∴.∵是高,,,;当,时,∵,,∴.∵平分,∴.∵是高,,,.(3)当时,即时,∵,,∴.∵平分,∴.∵是高,,,;当时,即时,∵,,∴.∵平分,∴.∵是高,,,;综上所述,当时,;当时,.【点睛】本题主要考查三角形内角和定理和三角形的角平分线,高,掌握三角形内角和定理和直角三角形两锐角互余是解题的关键.2.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4);.【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4);.【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)①根据角平分线的定义及三角形内角和定理即可得出结论;②连结BE,由(2)的结论及四边形内角和为360°即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.【详解】(1).理由如下:如图1,,,,;(2).理由如下:在中,,在中,,,;(3)①,,、分别平分和,,.故答案为:.②连结.∵,.故答案为:;(4)由(1)知,,,,,,,,,,,;.【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.3.(1)110(2)(90+n)(3)×90°+n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是∠ABC与∠ACB的角平解析:(1)110(2)(90+n)(3)×90°+n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是∠ABC与∠ACB的角平分线,用n°的代数式表示出∠OBC与∠OCB的和,再根据三角形的内角和定理求出∠BOC的度数;(3)根据规律直接计算即可.【详解】解:(1)∵∠A=40°,∴∠ABC+∠ACB=140°,∵点O是∠AB故答案为:110°;C与∠ACB的角平分线的交点,∴∠OBC+∠OCB=70°,∴∠BOC=110°.(2)∵∠A=n°,∴∠ABC+∠ACB=180°-n°,∵BO、CO分别是∠ABC与∠ACB的角平分线,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=(180°﹣n°)=90°﹣n°,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+n°.故答案为:(90+n);(3)由(2)得∠O=90°+n°,∵∠ABO的平分线与∠ACO的平分线交于点O1,∴∠O1BC=∠ABC,∠O1CB=∠ACB,∴∠O1=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=×180°+n°,同理,∠O2=×180°+n°,∴∠On=×180°+n°,∴∠O2017=×180°+n°,故答案为:×90°+n°.【点睛】本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180°.4.(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④2∠A+∠APB=90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.【详解】(1)证明:∵在中,,∴,∵BD是的角平分线,∴,∴,∴是“准互余三角形”;(2)①∵,∴,∴是“准互余三角形”,故①正确;②∵,,∴,∴不是“准互余三角形”,故②错误;③设三角形的三个内角分别为,且,∵三角形是“准互余三角形”,∴或,∴,∴,∴“准互余三角形”一定是钝角三角形,故③正确;综上所述,①③正确,故答案为:①③;(3)∠APB的度数是10°或20°或40°或110°;如图①,当2∠A+∠ABC=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A=20°,∴∠APB=110°;如图②,当∠A+2∠APB=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,∴∠APB=40°;如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠APB=20°;如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;综上,∠APB的度数是10°或20°或40°或110°时,是“准互余三角形”.【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.5.(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H解析:(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=α+5°,再根据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,求得α=70°,即可根据三角形内角和定理,得到∠EKD的度数.【详解】解:(1)∠AED=∠EAF+∠EDG.理由:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明:如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,如图3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=∠EDK=α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【点睛】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.6.阅读材料:,见解析;拓展延伸:.【分析】(1)作,,,由平行线性质可得,结合已知,可证,进而得到,从而,,将代入可得.(2)过H点作HP∥MN,可得∠CHA=∠PHA+∠PHC,结合(1)的结解析:阅读材料:,见解析;拓展延伸:.【分析】(1)作,,,由平行线性质可得,结合已知,可证,进而得到,从而,,将代入可得.(2)过H点作HP∥MN,可得∠CHA=∠PHA+∠PHC,结合(1)的结论和CG平分∠ECD可得∠PHC=∠FCH=120°-,即可得.【详解】解:【阅读材料】作,,(如图1).∵,∴.∴.∵,∴.∴.∴.∵,∴.∵,∴.∴,.∴.∵,∴.【拓展延伸】结论:.理由:如图,作,过H点作HP∥MN,∴∠PHA=∠MAH=,由(1)得FC∥MN,∴FC∥HP,∴∠PHC=∠FCH,∵,CG平分∠ECD,∴∠ECG=20°+,∴∠FCH==180°-()-(20°+)=120°-∴∠CHA=∠PHA+∠PHC=+(120°-)=120°-即:.【点评】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.7.(1)150°;(2)∠BOM-∠CON=30°;(3)9秒或27秒,6秒或24秒【分析】(1)根据邻补角的定义求出∠AOC=120°,再根据角平分线的定义求出∠COM,然后根据∠CON=∠CO解析:(1)150°;(2)∠BOM-∠CON=30°;(3)9秒或27秒,6秒或24秒【分析】(1)根据邻补角的定义求出∠AOC=120°,再根据角平分线的定义求出∠COM,然后根据∠CON=∠COM+90°解答;(2)用∠BOM和∠CON表示出∠BON,然后列出方程整理即可得解.(3)分别分两种情况根据平行线的性质和旋转的性质求出旋转角,然后除以旋转速度即可得解.【详解】解:(1)∵∠AOC=120°,∴∠BOC=60°,又∵OM平分∠AOC,∴∠COM=∠BOC=60°,∴∠CON=∠COM+90°=150°;(2)∵∠MON=90°,∠BOC=60°,∴∠BON=90°-∠BOM,∠BON=60°-∠CON,∴90°-∠BOM=60°-∠CON,∴∠BOM-∠CON=30°,故∠BOM与∠CON之间的数量关系为:∠BOM-∠CON=30°.(3)∵∠OMN=30°,∴∠N=90°-30°=60°,∵∠BOC=60°,∴当ON在直线AB上时,MN∥OC,如图,则旋转角为90°或270°,∵每秒顺时针旋转10°,∴时间为9秒或27秒;当直线ON恰好平分锐角∠BOC时,则旋转角为90°-30°=60°或90°+150°=240°,∵每秒顺时针旋转10°,∴时间为6秒或24秒.【点睛】本题考查了旋转的性质,角平分线的定义,平行线的性质,读懂题目信息并熟练掌握各性质是解题的关键,难点在于(3)要分情况讨论.8.(1);(2)①;②.【分析】(1)根据,,可以得到,即,再根据三角形外角定理求解即可.(2)①射线平分时,可知此时,根据题意可以确定运动时间t=3s或t=9s,从而计算的度数即可;②用含t的解析:(1);(2)①;②.【分析】(1)根据,,可以得到,即,再根据三角形外角定理求解即可.(2)①射线平分时,可知此时,根据题意可以确定运动时间t=3s或t=9s,从而计算的度数即可;②用含t的代数式表示出所成的角度,然后进行动态分析求解即可.【详解】解(1)∵,∴∴又∵∴(2)①∵射线平分∴∵射线从出发,以相同的速度绕点按顺时针方向旋转至后停止运动,此时射线也停止运动,∴运动的总时间∵射线从出发,以每秒的速度绕点按逆时针方向匀速旋转,当到达时立刻返回至,然后继续按上述方式旋转∴第一次,,第二次时,,第三次时,以此类推故当第一次,∴故第二次时,∴故第三次时,∴∵∴②如图所示直线与直线相交所成的锐角是∴∵,,∴∴又∵∴第一种情况,当时∴当时解得当解得第二种情况,当∴此时t无解,第三种情况当同理可以计算出,综上所述:【点睛】本题主要考查了三角形内角和定理,解题的关键在于能够正确的分析动态过程.9.(1)105,15;(2)旋转角的所有可能的度数是:15°,45°,105°,135°,150°;(3),保持不变;见解析【分析】(1)三角板ADE顺时针旋转后的三角板为,当时,,则可求得旋转角解析:(1)105,15;(2)旋转角的所有可能的度数是:15°,45°,105°,135°,150°;(3),保持不变;见解析【分析】(1)三角板ADE顺时针旋转后的三角板为,当时,,则可求得旋转角度;当∥BC时,,则可求得旋转角度;(2)分五种情况考虑:AD∥BC,DE∥AB,DE∥BC,DE∥AC,AE∥BC,即可分别求出旋转角;(3)设BD分别交、于点M、N,利用三角形的内外角的相等关系分别得出:及,由的内角和为180°,即可得出结论.【详解】(1)三角板ADE顺时针旋转后的三角板为,当时,如图,∵,∠EAD=45°∴即旋转角当时,如图,则∴=45°-30°=15°即旋转角°故答案为:105,15(2)当的一边与的某一边平行(不共线)时,有五种情况当AD∥BC时,由(1)知旋转角为15°;如图(1),当DE∥AB时,旋转角为45°;当DE∥BC时,由AD⊥DE,则有AD⊥BC,此时由(1)知,旋转角为105°;如图(2),当DE∥AC时,则旋转角为135°;如图(3),当AE∥BC时,则旋转角为150°;所以旋转角的所有可能的度数是:15°,45°,105°,135°,150°(3)当,,保持不变;理由如下:设BD分别交、于点M、N,如图在中,,,【点睛】本题考查了图形旋转的性质,三角形内角和定理,三角形的外角与不相邻的两个内角的相等关系等知识,注意旋转的三要素:旋转中心,旋转方向和旋转角度.10.(1)130°;(2)①90-;②不变,90-;③∠NDC+∠MDB=90-.【分析】(1)根据已知,以及三角形内角和等于180,即可求解;(2)①根据平行线的性质可以证得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论