版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页2026年高考数学一轮复习:独立重复试验习题典型例题1.2022世界乒乓球团体锦标赛将于2022年9月30日至10月9日在成都举行.近年来,乒乓球运动已成为国内民众喜爱的运动之一.今有甲、乙两选手争夺乒乓球比赛冠军,比赛采用三局两胜制,即某选手率先获得两局胜利时比赛结束.根据以往经验,甲、乙在一局比赛获胜的概率分别为、,且每局比赛相互独立.(1)求甲获得乒乓球比赛冠军的概率;(2)比赛开始前,工作人员买来两盒新球,分别为“装有2个白球与1个黄球”的白盒与“装有1个白球与2个黄球”的黄盒.每局比赛前裁判员从盒中随机取出一颗球用于比赛,且局中不换球,该局比赛后,直接丢弃.裁判按照如下规则取球:每局取球的盒子颜色与上一局比赛用球的颜色一致,且第一局从白盒中取球.记甲、乙决出冠军后,两盒内白球剩余的总数为,求随机变量的分布列与数学期望.2.甲和乙相约下围棋,已知甲开局时,甲获胜的概率为;乙开局时,乙获胜的概率为,并且每局下完,输者下一局开局.第1局由甲开局.(1)如果两人连下3局,求甲至少胜2局的概率;(2)如果每局胜者得1分,输者不得分,先得2分者获胜且比赛结束(无平局).若两人最后的比分为,求.3.灵活就业的岗位主要集中在近些年兴起的主播、自媒体、配音,还有电竞、电商这些新兴产业上.只要有网络、有电脑,随时随地都可以办公.这些岗位出现的背后都离不开互联网的加速发展和短视频时代的大背景.甲、乙两人同时竞聘某公司的主播岗位,采取三局两胜制进行比赛,假设甲每局比赛获胜的概率为,且每局比赛都分出了胜负.(1)求比赛结束时乙获胜的概率;(2)比赛结束时,记甲获胜的局数为随机变量X,求随机变量X的分布列.4.已知某射击运动员射中固定靶的概率为,射中移动靶的概率为,每次射中固定靶、移动靶分别得1分、2分,脱靶均得0分,每次射击的结果相互独立,该射击运动员进行3次打靶射击;向固定靶射击2次,向移动靶射击1次.(1)求“该射击运动员没有射中移动靶且恰好射中固定靶1次”的概率;(2)若该射击运动员的总得分为X,求X的分布列和数学期望.5.11分制乒乓球比赛,每赢一球得1分,当某局打成平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为,乙发球时甲得分的概率为,各球的比赛结果相互独立.在某局比赛双方打成平后,甲先发球.(1)求再打2球该局比赛结束的概率;(2)两人又打了个球该局比赛结束,求的数学期望;(3)若将规则改为“打成平后,每球交换发球权,先连得两分者获胜”,求该局比赛甲获胜的概率.6.11分制乒乓球比赛规则如下:在一局比赛中,每两球交换发球权,每赢一球得1分,先得11分且至少领先2分者胜,该局比赛结束:当某局比分打成10∶10后,每球交换发球权,领先2分者胜,该局比赛结束现有甲、乙两人进行一场五局三胜、每局11分制的乒乓球比赛,比赛开始前通过抛掷一枚质地均匀的硬币来确定谁先发球假设甲发球时甲得分的概率为,乙发球时甲得分的概率为,各球的比赛结果相互独立,且各局的比赛结果也相互独立.(1)若每局比赛甲获胜的概率,求该场比赛甲获胜的概率.(2)已知第一局目前比分为10∶10,求(ⅰ)再打两个球甲新增的得分的分布列和均值;(ⅱ)第一局比赛甲获胜的概率;课后练习1.为弘扬中华民族优秀传统文化,某校举行“阅读经典名著,传承优秀文化”闯关活动.参赛者需要回答三个问题,其中前2个问题回答正确各得5分,回答不正确得0分;第三个问题回答正确得10分,回答不正确得-5分,得分不少于15分即为过关.如果甲同学回答前两个问题正确的概率都是,回答第三个问题正确的概率为(1)求甲同学过关的概率;(2)求甲同学回答这三个问题的总得分X的分布列及数学期望.2.已知甲口袋有个红球和2个白球,乙口袋有个红球和2个白球,小明从甲口袋有放回地连续摸球2次,每次摸出一个球,然后再从乙口袋有放回地连续摸球2次,每次摸出一个球.(1)当时,(i)求小明4次摸球中,至少摸出1个白球的概率;(ii)设小明4次摸球中,摸出白球的个数为,求的数学期望;(2)当时,设小明4次摸球中,恰有3次摸出红球的概率为,则当为何值时,最大?3.甲、乙两人进行投球练习,两人各投球一次命中的概率分别为、,投中得分,投不中得分.两人的每次投球均相互独立.(1)甲、乙两人各投球一次,求两人得分之和为0分的概率;(2)甲、乙两人各投球两次,求两人得分之和的分布列及其数学期望.4.某旅游景区在手机APP上推出游客竞答的问卷,题型为单项选择题,每题均有4个选项,其中有且只有一项是正确选项.对于游客甲,在知道答题涉及的内容的条件下,可选出唯一的正确选项;在不知道答题涉及的内容的条件下,则随机选择一个选项.已知甲知道答题涉及内容的题数占问卷总题数的(1)求甲任选一题并答对的概率;(2)若问卷答题以题组形式呈现,每个题组由2道单项选择题构成,每道选择题答对得2分,答错扣1分,放弃作答得0分.假设对于任意一道题,甲选择作答的概率均为,且两题是否选择作答及答题情况互不影响,记每组答题总得分为,①求和②求5.2024年7月26日至8月11日将在法国巴黎举行夏季奥运会.为了普及奥运知识,M大学举办了一次奥运知识竞赛,竞赛分为初赛与决赛,初赛通过后才能参加决赛(1)初赛从6道题中任选2题作答,2题均答对则进入决赛.已知这6道题中小王能答对其中4道题,记小王在初赛中答对的题目个数为,求的数学期望以及小王在已经答对一题的前提下,仍未进入决赛的概率;(2)大学为鼓励大学生踊跃参赛并取得佳绩,对进入决赛的参赛大学生给予一定的奖励.奖励规则如下:已进入决赛的参赛大学生允许连续抽奖3次,中奖1次奖励120元,中奖2次奖励180元,中奖3次奖励360元,若3次均未中奖,则只奖励60元.假定每次抽奖中奖的概率均为,且每次是否中奖相互独立.(i)记一名进入决赛的大学生恰好中奖1次的概率为,求的极大值;(ii)大学数学系共有9名大学生进入了决赛,若这9名大学生获得的总奖金的期望值不小于1120元,试求此时的取值范围.6.三个人猜拳决定胜利者,三个人分别可以出“石头”,“剪刀”,“布”,其中“石头”赢“剪刀”,“剪刀”赢
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 常州市溧阳中学高三地理一轮复习工业区作业
- 2025年大二(金属材料工程)材料腐蚀与防护考核题
- 2025年大学大四(土木工程)综合应用测试卷
- 2025年大学物联网工程(物联网通信技术)试题及答案
- 2025年大学(车辆工程)汽车造型设计基础综合测试卷及答案
- 2025年大学第一学年(林学)森林培育学基础阶段测试试题及答案
- 2025年中职作物生产技术(农业施肥技术)试题及答案
- 2025年大学工商管理(客户关系管理)试题及答案
- 中职第一学年(建筑工程施工)建筑测量基础2026年试题及答案
- 2026年云计算资源调度与优化(效率提升)考题及答案
- 氩气瓶安全培训课件
- 2025年重庆历史高考试题及答案
- 网络系统管理与维护期末考试练习题含答案
- 穿越机入门教学课件
- 2024年中国纪检监察学院招聘真题
- 地质灾害危险性评估方案报告
- 感术行动培训课件
- DB44∕T 2552-2024 药物临床试验伦理审查规范
- 跨区域文化协作-洞察及研究
- 2025 易凯资本中国健康产业白皮书 -生物制造篇(与茅台基金联合发布)
- 产业经济学(苏东坡版)课后习题及答案
评论
0/150
提交评论