数学初中苏教七年级下册期末测试真题(比较难)及解析_第1页
数学初中苏教七年级下册期末测试真题(比较难)及解析_第2页
数学初中苏教七年级下册期末测试真题(比较难)及解析_第3页
数学初中苏教七年级下册期末测试真题(比较难)及解析_第4页
数学初中苏教七年级下册期末测试真题(比较难)及解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学初中苏教七年级下册期末测试真题(比较难)及解析一、选择题1.下列计算结果正确的是()A. B. C. D.2.如图,下列说法正确的是()A.与是同位角 B.与是内错角C.与是同旁内角 D.与是同位角3.不等式2x-7<5-2x的正整数解有()A.1个 B.2个 C.3个 D.4个4.若,则下列不等式中一定成立的是()A. B. C. D.5.已知关于的二元一次方程组的解满足,则的取值范围是()A. B. C. D.6.下列说法中正确的个数有()①在同一平面内,不相交的两条直线必平行;②同旁内角互补;③;④;⑤有两边及其一角对应相等的两个直角三角形全等;⑥经过直线外一点,有且只有一条直线与已知直线垂直.A.0个 B.1个 C.2个 D.3个7.正方形在数轴上的位置如图所示,点对应的数分别为和0.若正方形绕着点C顺时针方向在数轴上翻转,翻转1次后,点D所对应的数为1;绕点D翻转第2次;继续翻转,则翻转2020次后,数轴上数2020所对应的点是()A.点A B.点B C.点C D.点D8.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将∠C沿DE对折,使点C落在△ABC外的点C′处,若∠1=20°,则∠2的度数为()A.80° B.90° C.100° D.110°二、填空题9.计算____________.10.能使命题“若,则”为假命题的b所有可能值组成的范围为____.11.若一个多边形的内角和是外角和的2.5倍,则该多边形为______边形.12.利用平方差公式计算的结果为______.13.已知关于的方程组,为常数,给出下列结论:①是方程组的解;②当时,方程组的解也是方程的解;③无论取何值,和的值都不可能互为相反数.其中正确的是_______.(填序号)14.如图,中,,,,.点是线段上的一个动点,则的最小值为______.15.已知三角形的两边a3,b7,第三边是c,则第三边c的取值范围是_______.16.如图,与的大小关系为:______.17.计算(1)(2)18.因式分解:(1)(2)n2(m﹣2)+4(2﹣m)19.解方程组(1)(2)20.解不等式组并把它的解集在数轴上表示出来.三、解答题21.完成下面的证明:已知:如图,,和相交于点,平分,和相交于点,.求证:.证明:(已知),(______________),________(两直线平行,同位角相等).又(已知),______(________)(等量代换).平分(已知),_______(角平分线的定义).(_________).22.某体育用品商店购进乒乓球拍和羽毛球拍进行销售,已知羽毛球拍比乒乓球拍每副进价高20元,用10000元购进羽毛球拍与用8000元购进乒乓球拍的数量相等.(1)求每副乒乓球拍、羽毛球拍的进价各是多少元?(2)该体育用品商店计划用不超过8840元购进乒乓球拍、羽毛球拍共100副进行销售,且乒乓球拍的进货量不超过60副,请求出该商店有几种进货方式?23.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A和B两种款式的瓷砖,且A款正方形瓷砖的边长与B款长方形瓷砖的长相等,B款瓷砖的长大于宽.已知一块A款瓷砖和-块B款瓷砖的价格和为140元;3块A款瓷砖价格和4块B款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为_米(直接写出答案).24.(1)如图1,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度数;(2)如图2,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=α°,∠ABC=β°,求∠AEC的度数;(3)如图3,PQ⊥MN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分∠BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由.25.我们知道:光线反射时,反射光线、入射光线分别在法线两侧,反射角等于入射角.如图1,为一镜面,为入射光线,入射点为点O,为法线(过入射点O且垂直于镜面的直线),为反射光线,此时反射角等于入射角,由此可知等于.(1)两平面镜、相交于点O,一束光线从点A出发,经过平面镜两次反射后,恰好经过点B.①如图2,当为多少度时,光线?请说明理由.②如图3,若两条光线、所在的直线相交于点E,延长发现和分别为一个内角和一个外角的平分线,则与之间满足的等量关系是_______.(直接写出结果)(2)三个平面镜、、相交于点M、N,一束光线从点A出发,经过平面镜三次反射后,恰好经过点E,请直接写出、、与之间满足的等量关系.【参考答案】一、选择题1.A解析:A【分析】根据幂的乘方、同底数幂的乘法的运算法则,合并同类项法则、完全平方公式计算得出答案.【详解】解:A、(a3)2=a6,原计算正确,故此选项符合题意;B、a3•a2=a5,原计算错误,故此选项不符合题意;C、a3与a2不是同类项,不能合并,原计算错误,故此选项不符合题意;D、(a-b)2=a2-2ab+b2,原计算错误,故此选项不符合题意;故选:A.【点睛】此题主要考查了幂的乘方、同底数幂的乘法的运算法则,合并同类项法则、完全平方公式,正确掌握运算法则和公式是解题的关键.2.B解析:B【分析】根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角可得答案.【详解】解:∵∠3与∠1是同位角,∠C与∠1是内错角,∠2与∠3是邻补角,∠B与∠3是同旁内角,∴B选项正确,故选:B.【点睛】此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.3.B解析:B【分析】先求出不等式的解集,在取值范围内可以找到正整数解.【详解】解:不等式2x-7<5-2x的解集为x<3,正整数解为1,2,共两个.故选:B.【点睛】解答此题要先求出不等式的解集,再确定正整数解.4.D解析:D【分析】根据不等式的基本性质解答即可.【详解】解:∵a>b,∴a-b>0,故A错误;由于不能确定a与b是否同号,所以ab的符号不能确定,故B错误;-a<-b,故C错误;a+1>b+1,故D正确.故选:D.【点睛】本题考查了不等式的性质,熟练运用不等式的性质是解题的关键.5.A解析:A【分析】先把方程组的两个方程组相减得到,再根据得到,然后解出即可;【详解】把两式相减得到,∵,∴,∴;故答案选A.【点睛】本题主要考查了方程组与不等式的结合,准确计算是解题的关键.6.B解析:B【分析】(1)根据平行线的定义:在同一平面内,永不相交的两条直线叫平行线来解答;(2)根据平行线的性质解答;(3)根据完全平方公式解答;(4)根据零次幂的意义解答;(5)根据全等三角形的判定解答;(6)根据垂线公理解答.【详解】解:根据平行线的定义①正确;②错,两直线平行,同旁内角互补;③错,;④错,当x-2≠0时,(x-2)0=1;⑤错,有两边及其夹一角对应相等的两个直角三角形全等;⑥错,同一平面内,经过直线外一点,有且只有一条直线与已知直线垂直;故选:B.【点睛】本题考查了两直线的位置关系,完全平方公式,0指数幂、全等三角形的判定等知识,熟练掌握相关知识是解题的关键.7.C解析:C【分析】根据题意可知每4次翻转为一个循环组依次循环,用2020除以4,根据正好能整除可得解.【详解】解:由题意可得:点C对应0,点D对应1,点A对应2,点B对应3,点C对应4,...,∵每4次翻转为一个循环组依次循环,∴2020÷4=505,∴翻转2020次后,数轴上数2020所对应的点是点C.故选:C.【点睛】本题考查了数轴,根据翻转的变化规律确定出每4次翻转为一个循环组依次循环是解题的关键.8.C解析:C【分析】先根据平角的定义和翻折变换的性质求出∠DEC,再根据三角形内角和定理求出∠CDE,即可得出答案.【详解】解:∠A=65°,∠B=75°,∴∠C=∠C′=180°-∠A-∠B=40°,由翻折变换的性质可得:∠DEC=∠DEC′,∠DEC+∠DEB=∠DEC+∠DEC′-∠1=180°,∴∠DEC=100°,∴∠CDE=∠EDC′=180°-∠C-∠DEC=40°,∴∠2=180°-∠CDE-∠EDC′=100°.故选C.【点睛】本题主要考查了翻折变换的性质与三角形内角和定理,难度适中.二、填空题9.【分析】根据单项式乘以单项式的运算法则进行计算即可得到答案.【详解】解:,故答案为:.【点睛】本题考查了单项式乘以单项式,熟练掌握运算法则是解答此题的关键.10.【分析】根据不等式的性质和命题的真假判断即可;【详解】当b=0时,得,此命题是假命题;当时,得,此命题是接命题;故b的取值范围为.【点睛】本题主要考查了命题与定理的考查,结合不等式的性质判断是关键.11.七【分析】根据多边形的内角和定理,多边形的内角和等于(n-2)•180°,外角和等于360°,然后列方程求解即可.【详解】解:设多边形的边数是n,根据题意得,(n-2)•180°=2.5×360°,解得n=7.故这个多边形是七边形.故答案为:七.【点睛】本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键.12.-1010【分析】把分子利用平方差公式分解因式,然后约分化简.【详解】解:原式,故答案为:-1010.【点睛】本题考查了利用平方差公式进行因式分解,熟练掌握a2-b2=(+b)(a-b)是解答本题的关键.13.②③【分析】①将m=6,n=-1代入检验即可做出判断;②将a=2代入方程组求出方程组的解,代入方程中检验即可;③将m和n分别用a表示出来,然后求出m+n=3来判断.【详解】解:①将,代入方程组得:,由①得,由②得,故①不正确.②将代入方程组得:,解此方程得:,将,代入方程,方程左边右边,是方程的解,故②正确.③解方程①②得:解得:将的值代入①得:所以,故无论取何值,、的值都不可能互为相反数故③正确.则正确的选项有②③.故答案为:②③.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.14.C解析:【分析】当CP⊥AB时,CP的值最小,利用面积法求解即可.【详解】解:在Rt△ABC中,∠ACB=90°,AC=5,BC=12,AB=13,当CP⊥AB时,CP的值最小,此时:△ABC的面积=•AB•CP=•AC•BC,∴13CP=5×12,∴PC=,故答案为:.【点睛】本题主要考查了垂线段最短和三角形的面积公式,解题的关键是学会利用面积法求高.15.【分析】根据三角形三边关系即可求得.【详解】三角形的两边a3,b7,第三边是c,,即.故答案为:.【点睛】本题考查了三角形三边关系,理解三角形三边关系是解题的关键.解析:【分析】根据三角形三边关系即可求得.【详解】三角形的两边a3,b7,第三边是c,,即.故答案为:.【点睛】本题考查了三角形三边关系,理解三角形三边关系是解题的关键.16.>【分析】如图(见解析)延长的一条边,根据三角形外角的性质,即可求解【详解】解:如图延长的一条边,根据三角形外角的性质可得:故答案为>.【点睛】此题考查了三角形外角的性质,掌握三角解析:>【分析】如图(见解析)延长的一条边,根据三角形外角的性质,即可求解【详解】解:如图延长的一条边,根据三角形外角的性质可得:故答案为>.【点睛】此题考查了三角形外角的性质,掌握三角形外角的性质并根据图形构造出角之间的关系是解题的关键.17.(1);(2)2【分析】(1)先分别计算积的乘方,幂的乘方,单项式乘以单项式,再合并同类项即可;(2)根据有理数的乘方,负整数指数幂的运算,零指数幂的运算,分别计算即可.【详解】(1)解:解析:(1);(2)2【分析】(1)先分别计算积的乘方,幂的乘方,单项式乘以单项式,再合并同类项即可;(2)根据有理数的乘方,负整数指数幂的运算,零指数幂的运算,分别计算即可.【详解】(1)解:原式,(2)解:原式.【点睛】本题考查整式的乘法和实数的混合运算,以及零指数幂和负整数指数幂的计算,熟练掌握运算法则是解题关键.18.(1)(2)【分析】(1)先提取公因式,然后再利用完全平方公式进行分解即可;(2)先提取公因式,然后再利用平方差公式进行分解即可【详解】解:(1)=,=.(2)n2(m﹣2)+4解析:(1)(2)【分析】(1)先提取公因式,然后再利用完全平方公式进行分解即可;(2)先提取公因式,然后再利用平方差公式进行分解即可【详解】解:(1)=,=.(2)n2(m﹣2)+4(2﹣m),=,=.【点睛】本题考查了因式分解,解题关键是掌握因式分解的顺序和方法,注意:因式分解要彻底.19.(1);(2)【分析】(1)先把变为,然后利用代入消元法解方程组,即可得到答案;(2)先把方程组进行整理,然后利用加减消元法解方程组,即可得到答案.【详解】解:(1),把方程①整理得:③解析:(1);(2)【分析】(1)先把变为,然后利用代入消元法解方程组,即可得到答案;(2)先把方程组进行整理,然后利用加减消元法解方程组,即可得到答案.【详解】解:(1),把方程①整理得:③,把③代入②中,得,解得:,把代入③,解得:;∴方程组的解为;(2),原方程组整理得,由,得,解得:,把代入①,解得:,∴方程组的解为;【点睛】本题考查了解二元一次方程组,解题的关键是熟练掌握加减消元法、代入消元法解方程组.20.,数轴见解析【分析】先分别求出两个不等式的解集,可得到不等式组的解集,然后再数轴上表示出来即可.【详解】解:解不等式①得:.解不等式②得:.所以,不等式组的解集是:.在数轴上表示不等解析:,数轴见解析【分析】先分别求出两个不等式的解集,可得到不等式组的解集,然后再数轴上表示出来即可.【详解】解:解不等式①得:.解不等式②得:.所以,不等式组的解集是:.在数轴上表示不等式组的解集为【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键.三、解答题21.内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换.【分析】由可判定,即得出,再根据得出,等量代换得到,再根据角平分线的定义等量代换即可得解.【详解】证明:(已知),(内解析:内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换.【分析】由可判定,即得出,再根据得出,等量代换得到,再根据角平分线的定义等量代换即可得解.【详解】证明:(已知),(内错角相等,两直线平行),(两直线平行,同位角相等).又(已知),(两直线平行,同位角相等),(等量代换).平分(已知),(角平分线的定义).(等量代换).故答案为:内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换.【点睛】本题考查了平行线的判定与性质,解题的关键是熟记“内错角相等,两直线平行”、“两直线平行,同位角相等”.22.(1)每副乒乓球拍、羽毛球拍进价分别为80元、100元;(2)共有3种进货方式,详见解析.【分析】(1)可设购买1副乒乓球拍需x元,根据用10000元购进羽毛球拍与用8000元购进乒乓球拍的数量解析:(1)每副乒乓球拍、羽毛球拍进价分别为80元、100元;(2)共有3种进货方式,详见解析.【分析】(1)可设购买1副乒乓球拍需x元,根据用10000元购进羽毛球拍与用8000元购进乒乓球拍的数量相等,列出分式方程,解方程检验即可.(2)可设购买了乒乓球拍y副,根据该体育用品商店计划用不超过8840元购进乒乓球拍、羽毛球拍共100副,列出不等式求解,再根据乒乓球拍的进货量不超过60副取公共部分的整数,可知共有3种.【详解】(1)设每副乒乓球拍进价为x元,由题意得:解得:,经检验是原方程的解,且符合题意,此时.答:每副乒乓球拍、羽毛球拍进价分别为80元、100元.(2)设购进乒乓球拍y副,由题意得:解得:,因为所以,所以.故共有3种进货方式:①购买58副乒乓球拍,42副羽毛球拍;②购买59副乒乓球拍,41副羽毛球拍;③购买60副乒乓球拍,40副羽毛球拍.【点睛】本题考查了分式方程的应用及一元一次不等式组的应用,解题的关键是仔细审题,找到等量关系及不等关系,列出方程与不等式组,难度一般.23.(1)A款瓷砖单价为80元,B款单价为60元.(2)买了11块A款瓷砖,2块B款;或8块A款瓷砖,6块B款.(3)B款瓷砖的长和宽分别为1,或1,.【分析】(1)设A款瓷砖单价x元,B款单价y元解析:(1)A款瓷砖单价为80元,B款单价为60元.(2)买了11块A款瓷砖,2块B款;或8块A款瓷砖,6块B款.(3)B款瓷砖的长和宽分别为1,或1,.【分析】(1)设A款瓷砖单价x元,B款单价y元,根据“一块A款瓷砖和一块B款瓷砖的价格和为140元;3块A款瓷砖价格和4块B款瓷砖价格相等”列出二元一次方程组,求解即可;(2)设A款买了m块,B款买了n块,且m>n,根据共花1000元列出二元一次方程,求出符合题意的整数解即可;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米,根据图形以及“A款瓷砖的用量比B款瓷砖的2倍少14块”可列出方程求出a的值,然后由是正整教分情况求出b的值.【详解】解:(1)设A款瓷砖单价x元,B款单价y元,则有,解得,答:A款瓷砖单价为80元,B款单价为60元;(2)设A款买了m块,B款买了n块,且m>n,则80m+60n=1000,即4m+3n=50∵m,n为正整数,且m>n∴m=11时n=2;m=8时,n=6,答:买了11块A款瓷砖,2块B款瓷砖或8块A款瓷砖,6块B款瓷砖;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米.由题意得:,解得a=1.由题可知,是正整教.设(k为正整数),变形得到,当k=1时,,故合去),当k=2时,,故舍去),当k=3时,,当k=4时,,答:B款瓷砖的长和宽分别为1,或1,.【点睛】本题主要考查了二元一次方程组的实际应用,(1)(2)较为简单,(3)中利用数形结合的思想,找出其中两款瓷砖的数量与图形之间的规律是解题的关键.24.(1)∠E=45°;(2)∠E=;(3)不变化,【分析】(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠解析:(1)∠E=45°;(2)∠E=;(3)不变化,【分析】(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,则可得∠E=(∠D+∠B),继而求得答案;(2)首先延长BC交AD于点F,由三角形外角的性质,可得∠BCD=∠B+∠BAD+∠D,又由角平分线的性质,即可求得答案.(3)由三角形内角和定理,可得,利用角平分线的性质与三角形的外角的性质可得答案.【详解】解:(1)∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E,∴∠E=(∠D+∠B),∵∠ADC=50°,∠ABC=40°,∴∠AEC=×(50°+40°)=45°;(2)延长BC交AD于点F,∵∠BFD=∠B+∠BAD,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠E+∠ECB=∠B+∠EAB,∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-∠BCD=∠B+∠BAE-(∠B+∠BAD+∠D)=(∠B-∠D),∠ADC=α°,∠ABC=β°,即∠AEC=(3)的值不发生变化,理由如下:如图,记与交于,与交于,①,②,①-②得:AD平分∠BAC,【点睛】此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义.此题难度较大,注意掌握整体思想与数形结合思想的应用.25.(1)①90°,理由见解析;②∠MEN=2∠POQ;(2)2(∠M+∠N)-∠BCD=360°-∠BFD【分析】(1)①设∠AMP=∠NMO=α,∠BNQ=∠MNO=β,根据∠AMN+∠BNM=解析:(1)①90°,理由见解析;②∠MEN=2∠POQ;(2)2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论