版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2015-2016学年江苏省盐城市建湖县城南实验中学九年级(下)第一次学情检测数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.5的相反数是()A. B. C.﹣5 D.52.下列运算正确的是()A.x2+x4=x6 B.(﹣x3)2=x6 C.2a+3b=5ab D.x6÷x3=x23.据教育部通报,2014年参加全国硕士研究生入学考试的人数约为1720000.数字1720000用科学记数法表示为()A.17.2×105 B.1.72×106 C.1.72×105 D.0.172×1074.如图,C是⊙O上一点,若圆周角∠ACB=40°,则圆心角∠AOB的度数是()A.50° B.60° C.80° D.90°5.如图,数轴上A、B两点分别对应实数a、b,则下列结论正确的是()A.a﹣b>0 B.ab>0 C.a+b>0 D.|a|﹣|b|>06.在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A. B. C. D.7.下列说法中,正确是()A.对角线相等的四边形是矩形B.一组对边平行,另一组对边相等的四边形是平行四边形C.对角线互相垂直平分的四边形是菱形D.一组邻边相等,并且有一个内角为直角的四边形是正方形8.抛物线y=2x+4上部分点的横坐标x纵坐标y的对应值如下表,则下列说法中错误的是()x…﹣4﹣3﹣2﹣101…y…﹣37﹣21﹣9﹣133…A.当x>1时,y随x的增大而增大B.抛物线的对称轴为C.当x=2时,y=﹣1D.方程ax2+bx+c=0一个负数解x1满足﹣1<x1<0二、填空题(本大题共有10小题.不需写出解答过程,请将答案直接写在答题纸相应位置上)9.把多项式4ax2﹣ay2分解因式的结果是.10.在函数y=中,自变量x的取值范围是.11.若∠α的补角为76°28′,则∠α=.12.一个扇形的半径为8cm,弧长为πcm,则扇形的圆心角为.13.关于x的方程的解是正数,则a的取值范围是.14.如图,l∥m,等边△ABC的顶点A在直线m上,则∠α=.15.如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为m.16.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CDA=°.17.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为.18.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′,设Q点运动的时间为t秒,若四边形QPCP′为菱形,则t的值为.三、解答题(本大题共有10小题.请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)19.计算:.20.化简求值:÷(﹣a),其中a=﹣2.21.在一个不透明的袋子中,装有除颜色外其余均相同的红、黄、蓝三种球,其中有2个红球、1个蓝球,从中任意摸出一个是红球的概率为0.5(1)求袋中有几个黄球;(2)一手同时摸出两球(相当于第一次随机摸出一球,不放回,再随机摸出第二个球),请用画树状图或列表法求摸到两球至少一个球为红球的概率.22.某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.求原计划每天生产的零件个数和规定的天数.23.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.24.马航MH370失联后,我国政府积极参与搜救.某日,我两艘专业救助船A、B同时收到有关可疑漂浮物的讯息,可疑漂浮物P在救助船A的北偏东53.50°方向上,在救助船B的西北方向上,船B在船A正东方向140海里处.(参考数据:sin36.5°≈0.6,cos36.5°≈0.8,tan36.5°≈0.75).(1)求可疑漂浮物P到A、B两船所在直线的距离;(2)若救助船A、救助船B分别以40海里/时,30海里/时的速度同时出发,匀速直线前往搜救,试通过计算判断哪艘船先到达P处.25.已知:△ABC内接于⊙O,过点B作直线EF,AB为非直径的弦,且∠CBF=∠A.(1)求证:EF是⊙O的切线;(2)若∠A=30°,BC=2,连接OC并延长交EF于点M,求由弧BC、线段BM和CM所围成的图形的面积.26.已知四边形ABCD是正方形,等腰直角△AEF的直角顶点E在直线BC上(不与点B,C重合),FM⊥AD,交射线AD于点M.(1)当点E在边BC上,点M在边AD的延长线上时,如图①,求证:AB+BE=AM;(提示:延长MF,交边BC的延长线于点H.)(2)当点E在边CB的延长线上,点M在边AD上时,如图②;当点E在边BC的延长线上,点M在边AD上时,如图③.请分别写出线段AB,BE,AM之间的数量关系,不需要证明;(3)在(1),(2)的条件下,若BE=,∠AFM=15°,则AM=.27.某公司为一工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y与x的函数关系式(不要求写出x的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.28.如图,在平面直角坐标系中,抛物线y=ax2﹣8ax﹣9a的图象经过点C(0,3),交x轴于点A、B(A点在B点左侧),顶点为D.(1)求抛物线的解析式及点A、B的坐标;(2)将△ABC沿直线BC对折,点A的对称点为A′,试求A′的坐标;(3)抛物线的对称轴上是否存在点P,使∠BPC=∠BAC?若存在,求出点P的坐标;若不存在,请说明理由.
2015-2016学年江苏省盐城市建湖县城南实验中学九年级(下)第一次学情检测数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.5的相反数是()A. B. C.﹣5 D.5【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:5的相反数是﹣5,故选:C.2.下列运算正确的是()A.x2+x4=x6 B.(﹣x3)2=x6 C.2a+3b=5ab D.x6÷x3=x2【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【分析】分别根据幂的乘方、合并同类项、同底数幂的除法逐一进行判断即可.【解答】解:A、x2与x4不是同类项,不能合并,故本选项错误;B、(﹣x3)2=x6,正确;C、2a与3b不是同类项,不能合并,故本选项错误;D、应为x6÷x3=x6﹣3=x3,故本选项错误.故选B.3.据教育部通报,2014年参加全国硕士研究生入学考试的人数约为1720000.数字1720000用科学记数法表示为()A.17.2×105 B.1.72×106 C.1.72×105 D.0.172×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1720000用科学记数法表示为:1.72×106.故选B.4.如图,C是⊙O上一点,若圆周角∠ACB=40°,则圆心角∠AOB的度数是()A.50° B.60° C.80° D.90°【考点】圆周角定理.【分析】根据一条弧所对的圆周角的度数等于它所对的圆心角的度数的一半求解即可.【解答】解:∵∠ACB=40°,∴∠AOB=2∠C=80°.故选C.5.如图,数轴上A、B两点分别对应实数a、b,则下列结论正确的是()A.a﹣b>0 B.ab>0 C.a+b>0 D.|a|﹣|b|>0【考点】实数与数轴.【分析】先根据A、B两点在数轴上的位置判断出a,b的符号及绝对值的大小,进而可得出结论.【解答】解:∵由图可知,b<﹣1<0<a<1,∴|b|>a,∴a﹣b>0,故A正确;ab<0,故B错误;a+b<0,故C错误;|a|﹣|b|<0,故D错误.故选A.6.在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A. B. C. D.【考点】互余两角三角函数的关系.【分析】根据题意作出直角△ABC,然后根据sinA=,设一条直角边BC为5x,斜边AB为13x,根据勾股定理求出另一条直角边AC的长度,然后根据三角函数的定义可求出tan∠B.【解答】解:∵sinA=,∴设BC=5x,AB=13x,则AC==12x,故tan∠B==.故选:D.7.下列说法中,正确是()A.对角线相等的四边形是矩形B.一组对边平行,另一组对边相等的四边形是平行四边形C.对角线互相垂直平分的四边形是菱形D.一组邻边相等,并且有一个内角为直角的四边形是正方形【考点】多边形.【分析】根据特殊四边形的性质和判定可得,A选项应是“对角线相等的平行四边形是矩形”,B选项应是“一组对边平行且相等的四边形是平行四边形”,D选项应是“一组邻边相等,且有一个内角为直角的平行四边形是正方形”,故选C选项.【解答】解:A、对角线相等的平行四边形是矩形,故A错误;B、一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,故B错误;C、因为对角线互相平分,所以是平行四边形,再由对角线互相垂直,可得是菱形,故C正确;D、一组邻边相等,并且有一个内角是直角,还应要求是平行四边形,才是正方形,故D错误.故选C.8.抛物线y=2x+4上部分点的横坐标x纵坐标y的对应值如下表,则下列说法中错误的是()x…﹣4﹣3﹣2﹣101…y…﹣37﹣21﹣9﹣133…A.当x>1时,y随x的增大而增大B.抛物线的对称轴为C.当x=2时,y=﹣1D.方程ax2+bx+c=0一个负数解x1满足﹣1<x1<0【考点】二次函数的性质;图象法求一元二次方程的近似根.【分析】根据图表信息,先确定出抛物线的对称轴,然后根据二次函数的对称性对各选项分析判断后利用排除法求解.【解答】解:由图可知,抛物线的对称轴为直线x==,A、∵抛物线的对称轴为直线x==,∴在对称轴左侧,y随x增大而增大正确,故本选项错误;B、抛物线的对称轴为直线x=正确,故本选项正确;C、由抛物线的对称轴为直线x=可知,+(+1)=2,即抛物线上的点为(2,﹣1)和(﹣1,﹣1)是对称点,故本选项正确;D、由图表数据可知,函数y=0时,对应的x的一个值为﹣1<x1<0,故本选项正确.故选A.二、填空题(本大题共有10小题.不需写出解答过程,请将答案直接写在答题纸相应位置上)9.把多项式4ax2﹣ay2分解因式的结果是a(2x+y)(2x﹣y).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再根据平方差公式进行二次分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:4ax2﹣ay2=a(4x2﹣y2)=a(2x+y)(2x﹣y).故答案为:a(2x+y)(2x﹣y).10.在函数y=中,自变量x的取值范围是x≥2.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣2≥0且x﹣1≠0,解得x≥2且x≠1,所以,x≥2.故答案为:x≥2.11.若∠α的补角为76°28′,则∠α=103°32′.【考点】余角和补角;度分秒的换算.【分析】根据互为补角的概念可得出∠α=180°﹣76°28′.【解答】解:∵∠α的补角为76°28′,∴∠α=180°﹣76°28′=103°32′,故答案为:103°32′.12.一个扇形的半径为8cm,弧长为πcm,则扇形的圆心角为120°.【考点】弧长的计算.【分析】设扇形的圆心角为n°,根据弧长公式得到π=,然后解方程即可.【解答】解:设扇形的圆心角为n°,根据题意得π=,解得n=120,所以扇形的圆心角为120°.故答案为120°.13.关于x的方程的解是正数,则a的取值范围是a<﹣1且a≠﹣2.【考点】分式方程的解.【分析】先去分母得2x+a=x﹣1,可解得x=﹣a﹣1,由于关于x的方程的解是正数,则x>0并且x﹣1≠0,即﹣a﹣1>0且﹣a﹣1≠1,解得a<﹣1且a≠﹣2.【解答】解:去分母得2x+a=x﹣1,解得x=﹣a﹣1,∵关于x的方程的解是正数,∴x>0且x≠1,∴﹣a﹣1>0且﹣a﹣1≠1,解得a<﹣1且a≠﹣2,∴a的取值范围是a<﹣1且a≠﹣2.故答案为:a<﹣1且a≠﹣2.14.如图,l∥m,等边△ABC的顶点A在直线m上,则∠α=20°.【考点】平行线的性质;等边三角形的性质.【分析】延长CB交直线m于D,根据两直线平行,内错角相等解答即可,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠α.【解答】解:如图,延长CB交直线m于D,∵△ABC是等边三角形,∴∠ABC=60°,∵l∥m,∴∠1=40°.∴∠α=∠ABC﹣∠1=60°﹣40°=20°.故答案为:20°.15.如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为9m.【考点】相似三角形的应用.【分析】根据△OCD和△OAB相似,利用相似三角形对应边成比例列式求解即可.【解答】解:由题意得,CD∥AB,∴△OCD∽△OAB,∴=,即=,解得AB=9.故答案为:9.16.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CDA=125°.【考点】切线的性质.【分析】连接OD,构造直角三角形,利用OA=OD,可求得∠ODA=36°,从而根据∠CDA=∠CDO+∠ODA计算求解.【解答】解:连接OD,则∠ODC=90°,∠COD=70°;∵OA=OD,∴∠ODA=∠A=∠COD=35°,∴∠CDA=∠CDO+∠ODA=90°+35°=125°,故答案为:125.17.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为﹣.【考点】扇形面积的计算.【分析】连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.【解答】解:连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=AB=1,四边形DMCN是正方形,DM=.则扇形FDE的面积是:=.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA,又∵DM⊥BC,DN⊥AC,∴DM=DN,∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN,在△DMG和△DNH中,,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=.则阴影部分的面积是:﹣.故答案为﹣.18.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′,设Q点运动的时间为t秒,若四边形QPCP′为菱形,则t的值为2.【考点】菱形的性质;翻折变换(折叠问题).【分析】作PD⊥BC于D,PE⊥AC于E,AP=t,BQ=t,(0≤t<6),由△ABC为直角三角形得∠A=∠B=45°,则可判断△APE和△PBD为等腰直角三角形,所以PE=AE=AP=t,BD=PD,则CE=AC﹣AE=6﹣t,由四边形PECD为矩形得到PD=EC=6﹣t,则BD=6﹣t,所以QD=BD﹣BQ=6﹣2t,在Rt△PCE中,利用勾股定理得PC2=t2+(6﹣t)2,在Rt△PDQ中,PQ2=(6﹣t)2+(6﹣2t)2,然后根据菱形的性质得PQ=PC,即t2+(6﹣t)2=(6﹣t)2+(6﹣2t)2,然后解方程得到满足条件的t的值.【解答】解:作PD⊥BC于D,PE⊥AC于E,如图,AP=t,BQ=tcm,(0≤t<6)∵∠C=90°,AC=BC=6cm,∴△ABC为直角三角形,∴∠A=∠B=45°,∴△APE和△PBD为等腰直角三角形,∴PE=AE=AP=tcm,BD=PD,∴CE=AC﹣AE=(6﹣t)cm,∵四边形PECD为矩形,∴PD=EC=(6﹣t)cm,∴BD=(6﹣t)cm,∴QD=BD﹣BQ=(6﹣2t)cm,在Rt△PCE中,PC2=PE2+CE2=t2+(6﹣t)2,在Rt△PDQ中,PQ2=PD2+DQ2=(6﹣t)2+(6﹣2t)2,∵四边形QPCP′为菱形,∴PQ=PC,∴t2+(6﹣t)2=(6﹣t)2+(6﹣2t)2,∴t1=2,t2=6(舍去),∴t的值为2.故答案为:2.三、解答题(本大题共有10小题.请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)19.计算:.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】首先利用特殊角的三角函数得出tan60°的值,再利用绝对值的性质以及二次根式的性质、负整数指数幂的性质化简各数,进而求出答案.【解答】解:2tan60°﹣|﹣2|﹣+()﹣2=2﹣(2﹣)﹣3+9=7.20.化简求值:÷(﹣a),其中a=﹣2.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=÷=•=,当a=﹣2时,原式==.21.在一个不透明的袋子中,装有除颜色外其余均相同的红、黄、蓝三种球,其中有2个红球、1个蓝球,从中任意摸出一个是红球的概率为0.5(1)求袋中有几个黄球;(2)一手同时摸出两球(相当于第一次随机摸出一球,不放回,再随机摸出第二个球),请用画树状图或列表法求摸到两球至少一个球为红球的概率.【考点】列表法与树状图法;概率公式.【分析】(1)首先设袋中有x个黄球,根据题意得:=0.5,然后解此分式方程,即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及摸到两球至少一个球为红球的情况,再利用概率公式即可求得答案.【解答】解:(1)设袋中有x个黄球,根据题意得:=0.5,解得:x=1,经检验:x=1是原分式方程的解,答:袋中有1个黄球;(2)画树状图得:∵共有12种等可能的结果,摸到两球至少一个球为红球的有10种情况,∴摸到两球至少一个球为红球的概率为:=.故答案为:.22.某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.求原计划每天生产的零件个数和规定的天数.【考点】分式方程的应用.【分析】可设原计划每天生产的零件x个,根据时间是一定的,列出方程求得原计划每天生产的零件个数,再根据工作时间=工作总量÷工作效率,即可求得规定的天数.【解答】解:设原计划每天生产的零件x个,依题意有=,解得x=2400,经检验,x=2400是原方程的根,且符合题意.则规定的天数为24000÷2400=10(天).答:原计划每天生产的零件是2400个,规定的天数是10天.23.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.【考点】菱形的判定与性质;平行四边形的性质;解直角三角形.【分析】(1)根据∠CAB=∠ACB利用等角对等边得到AB=CB,从而判定平行四边形ABCD是菱形,根据菱形的对角线互相垂直即可证得结论;(2)分别在Rt△AOB中和在Rt△ABE中求得AO和AE,从而利用OE=AE﹣AO求解即可.【解答】解:(1)∵∠CAB=∠ACB,∴AB=CB,∴▱ABCD是菱形.∴AC⊥BD;(2)在Rt△AOB中,cos∠CAB==,AB=14,∴AO=14×=,在Rt△ABE中,cos∠EAB==,AB=14,∴AE=AB=16,∴OE=AE﹣AO=16﹣=.24.马航MH370失联后,我国政府积极参与搜救.某日,我两艘专业救助船A、B同时收到有关可疑漂浮物的讯息,可疑漂浮物P在救助船A的北偏东53.50°方向上,在救助船B的西北方向上,船B在船A正东方向140海里处.(参考数据:sin36.5°≈0.6,cos36.5°≈0.8,tan36.5°≈0.75).(1)求可疑漂浮物P到A、B两船所在直线的距离;(2)若救助船A、救助船B分别以40海里/时,30海里/时的速度同时出发,匀速直线前往搜救,试通过计算判断哪艘船先到达P处.【考点】解直角三角形的应用-方向角问题.【分析】(1)过点P作PE⊥AB于点E,在Rt△APE中解出PE即可;(2)分别求出PA、PB的长,根据两船航行速度,计算出两艘船到达P点时各自所需要的时间,即可作出判断.【解答】解:(1)过点P作PE⊥AB于点E,由题意得,∠PAE=36.5°,∠PBA=45°,设PE为x海里,则BE=PE=x海里,∵AB=140海里,∴AE=海里,在Rt△PAE中,,即:解得:x=60,∴可疑漂浮物P到A、B两船所在直线的距离约为60海里;(2)在Rt△PBE中,PE=60海里,∠PBE=45°,则BP=PE=60≈84.8海里,B船需要的时间为:84.8÷30≈2.83小时,在Rt△PAE中,=sin∠PAE,∴AP=PE÷sin∠PAE=60÷0.6=100海里,∴A船需要的时间为:100÷40=2.5小时,∵2.83>2.5,∴A船先到达.25.已知:△ABC内接于⊙O,过点B作直线EF,AB为非直径的弦,且∠CBF=∠A.(1)求证:EF是⊙O的切线;(2)若∠A=30°,BC=2,连接OC并延长交EF于点M,求由弧BC、线段BM和CM所围成的图形的面积.【考点】切线的判定与性质;扇形面积的计算.【分析】(1)连接BO并延长交⊙O于H,连接HC,首先根据圆周角定理得到∠H=∠A,由HB是直径得到∠HCB=90°,即∠H+∠CBH=90°,然后利用已知条件得到∠CBF+∠CBH=90°,即HB⊥EF,由此即可证明题目结论;(2)在Rt△HCB中由BC=2,∠H=∠A=30°得到HB=4,OB=2,又∠BOM=2∠A=60°,根据三角函数可以求出MB,而S=S△OBM﹣S扇形OBC=,由此即可求出由弧BC、线段BM和CM所围成的图形的面积.【解答】(1)证明:连接BO并延长交⊙O于H,连接HC,则∠H=∠A,∵HB是直径,∴∠HCB=90°∴∠H+∠CBH=90°.又∵∠A=∠CBF∴∠CBF+∠CBH=90°∴HB⊥EF.又∵OB是半径,∴EF是⊙O的切线.(2)解:在Rt△HCB中,BC=2,∠H=∠A=30°,∴HB=4,OB=2.∵∠BOM=2∠A=60°,∴,S=S△OBM﹣S扇形OBC===.∴由弧BC、线段BM和CM所围成的图形的面积为.26.已知四边形ABCD是正方形,等腰直角△AEF的直角顶点E在直线BC上(不与点B,C重合),FM⊥AD,交射线AD于点M.(1)当点E在边BC上,点M在边AD的延长线上时,如图①,求证:AB+BE=AM;(提示:延长MF,交边BC的延长线于点H.)(2)当点E在边CB的延长线上,点M在边AD上时,如图②;当点E在边BC的延长线上,点M在边AD上时,如图③.请分别写出线段AB,BE,AM之间的数量关系,不需要证明;(3)在(1),(2)的条件下,若BE=,∠AFM=15°,则AM=3﹣或.【考点】四边形综合题.【分析】(1)首先利用等腰直角三角形的性质和正方形的性质得AE=EF,∠ABE=∠EHF=90°,利用全等三角形的判定定理证明△ABE≌△EHF,再利用全等三角形的性质定理可得结论;(2)同(1)首先证明△ABE≌△EHF,再利用全等三角形的性质定理可得结论;(3)利用分类讨论的思想,首先由∠AFM=15°,易得∠EFH,由△ABE≌△EHF,根据全等三角形的性质易得∠AEB,利用锐角三角函数易得AB,利用(1)(2)的结论,易得AM.【解答】(1)证明:如图①,延长MF,交边BC的延长线于点H,∵四边形ABCD是正方形,FM⊥AD,∴∠ABE=90°,∠EHF=90°,四边形ABHM为矩形,∴AM=BH=BE+EH∵△AEF为等腰直角三角形,∴AE=AF,∠AEB+∠FEH=90°,∵∠EFH+∠FEH=90°,∴∠AEB=∠EFH,在△ABE与△EHF中,,∴△ABE≌△EHF(AAS),∴AB=EH,∵AM=BH=BE+EH,∴AM=BE+AB,即AB+BE=AM;(2)解:如图②,∵∠AEB+∠FEH=90°,∠AEB+∠EAB=90°,∴∠FEH=∠EAB,在△ABE与△EHF中,,∴△ABE≌△EHF(AAS),∴AB=EH=EB+AM;如图③∠BAE+∠AEB=90°,∠AEB+∠HEF=90°,∴∠BAE=∠HEF,在△ABE与△EHF中,,∴△ABE≌△EHF(AAS),∴AB=EH,∴BE=BH+EH=AM+AB;(3)解:如图①,∵∠AFM=15°,∠AFE=45°,∴∠EFM=60°,∴∠EFH=120°,在△EFH中,∵∠FHE=90°,∠EFH=120°,∴此情况不存在;如图②,∵∠AFM=15°,∠AFE=45°,∴∠EFH=60°,∵△ABE≌△EHF,∴∠EAB=∠EFH=60°,∵BE=,∴AB=BE•tan60°=×=3,∵AB=EB+AM,∴AM=AB﹣EB=3﹣;如图③,∵∠AFM=15°,∠AFE=45°,∴∠EFH=45°﹣15°=30°,∴∠AEB=30°,∵BE=,∴AB=BE•tan30°==1,∵BE=AM+AB,AM=BE﹣AB=,故答案为:3﹣或.27.某公司为一工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y与x的函数关系式(不要求写出x的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.【考点】二次函数的应用.【分析】本题属于市场营销问题,月利润=(每吨售价﹣每吨其它费用)×销售量,销售量与每吨售价的关系要表达清楚.再用二次函数的性质解决最大利润问题.【解答】解:(1)由题意得:45+×7.5=60(吨).(2)由题意:y=(x﹣100)(45+×7.5),化简得:y=﹣x2+315x﹣24000.(3)y=﹣x2+315x﹣24000=﹣(x﹣210)2+9075.利达经销店要获得最大月利润,材料的售价应定为每吨210元
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生物标志物在药物临床试验中的转化技术研究
- 生物化学虚拟实验微课资源开发
- 深度解析(2026)《GBT 20154-2024低温保存箱》(2026年)深度解析
- 深度解析(2026)《GBT 20042.1-2017质子交换膜燃料电池 第1部分:术语》(2026年)深度解析
- 税务总监岗位能力考试题库含答案
- 网站编辑面试题集及写作技巧
- 保险精算师风险评估面试题及答案
- 美容美发师专业技能鉴定题目及答案
- 公务员行政能力测试面试题目详解
- 大唐集团人力资源部长面试题库与评分标准含答案
- 压铸销售年终述职报告
- 输血科主任任职述职报告
- 2026年江西电力职业技术学院单招职业适应性测试题库附答案
- 2025 初中生物显性性状与隐性性状课件
- 设备寿命评价与定期验收标准
- 旧建筑外立面改造方案
- 2025年PMP考试模拟题及解析
- 励磁系统改造施工方案
- DB65T 3558-2013 多浪羊饲养管理技术规程
- 大型商场开业保安安保执行方案模板
- 老年意定监护协议合同书
评论
0/150
提交评论