版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省巢湖市汇文实验学校2026届高一上数学期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数且,则实数的范围()A. B.C. D.2.设,则“”是“”的A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件3.设函数,点,,在的图像上,且.对于,下列说法正确的是()①一定是钝角三角形②可能是直角三角形③不可能是等腰三角形③可能是等腰三角形A①③ B.①④C.②③ D.②④4.终边在x轴上的角的集合为()A. B.C. D.5.角度化成弧度为()A. B.C. D.6.函数的零点个数为(
)A.1 B.2C.3 D.47.使得成立的一个充分不必要条件是()A. B.C. D.8.如果,,那么直线不通过A.第一象限 B.第二象限C.第三象限 D.第四象限9.已知是定义在上的减函数,若对于任意,均有,,则不等式的解集为()A. B.C. D.10.已知菱形的边长为2,,点分别在边上,,.若,则等于()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则_______.12.给出下列四种说法:(1)函数与函数的定义域相同;(2)函数与的值域相同;(3)若函数式定义在R上的偶函数且在为减函数对于锐角则;(4)若函数且,则;其中正确说法序号是________.13.函数的最小值为________14.函数y=的单调递增区间是____.15.已知圆及直线,当直线被圆截得的弦长为时,的值等于________.16.对于函数和,设,,若存在、,使得,则称与互为“零点关联函数”.若函数与互为“零点关联函数”,则实数的取值范围为()A. B. C. D.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知点,,动点P满足若点P为曲线C,求此曲线的方程;已知直线l在两坐标轴上的截距相等,且与中的曲线C只有一个公共点,求直线l的方程18.已知正方体,分别为和上的点,且,.(1)求证:;(2)求证:三条直线交于一点.19.已知,,.(1)求,的值;(2)若,求值.20.已知定义域为的奇函数.(1)求的值;(2)用函数单调性的定义证明函数在上是增函数.21.已知函数为偶函数(1)求a的值,并证明在上单调递增;(2)求满足的x的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据解析式得,进而得令,得为奇函数,,进而结合函数单调性求解即可.【详解】函数,定义域为,满足,所以,令,所以,所以奇函数,,函数在均为增函数,所以在为增函数,所以在为增函数,因为为奇函数,所以在为增函数,所以,解得.故选:B.2、D【解析】若,则,故不充分;若,则,而,故不必要,故选D.考点:本小题主要考查不等式的性质,熟练不等式的性质是解答好本类题目的关键.3、A【解析】结合,得到,所以一定为钝角三角形,可判定①正确,②错误;根据两点间的距离公式和函数的变化率的不同,得到,可判定③正确,④不正确.【详解】由题意,函数为单调递增函数,因为点,,在的图像上,且,不妨设,可得,则,因为,可得,又由因为,,,,所以,所以所以,所以一定为钝角三角形,所以①正确,②错误;由两点间的距离公式,可得,根据指数函数和一次函数的变化率,可得点到的变化率小于点到点的变化率不相同,所以,所以不可能为等腰三角形,所以③正确,④不正确.故选:A.4、B【解析】利用任意角的性质即可得到结果【详解】终边在x轴上,可能为x轴正半轴或负半轴,所以可得角,故选B.【点睛】本题考查任意角的定义,属于基础题.5、A【解析】根据题意,结合,即可求解.【详解】根据题意,.故选:A.6、B【解析】函数的定义域为,且,即函数为偶函数,当时,,设,则:,据此可得:,据此有:,即函数是区间上的减函数,由函数的解析式可知:,则函数在区间上有一个零点,结合函数的奇偶性可得函数在R上有2个零点.本题选择B选项.点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点7、C【解析】由不等式、正弦函数、指数函数、对数函数的性质,结合充分、必要性的定义判断选项条件与已知条件的关系.【详解】A:不一定有不成立,而有成立,故为必要不充分条件;B:不一定成立,而也不一定有,故为既不充分也不必要条件;C:必有成立,当不一定有成立,故为充分不必要条件;D:必有成立,同时必有,故为充要条件.故选:C.8、A【解析】截距,因此直线不通过第一象限,选A9、D【解析】根据已知等式,结合函数的单调性进行求解即可.【详解】令时,,由,因为是定义在上的减函数,所以有,故选:D10、C【解析】,,即①,同理可得②,①+②得,故选C考点:1.平面向量共线充要条件;2.向量的数量积运算二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】将条件平方可得答案.【详解】因为,所以,所以故答案为:12、(1)(3)【解析】(1)根据定义域直接判断;(2)分别求出值域即可判断;(3)利用偶函数图形的对称性得出在上的单调性及锐角,可以判断;(4)通过对数性质及对数运算即可判断.【详解】(1)函数与函数的定义域都为.所以(1)正确.(2)函数的值域为而的值域为,所以值域不同,故(2)错误.(3)函数在定义R上的偶函数且在为减函数,则函数在在为增函数,又为锐角,则,所以,故(3)正确.(4)函数且,则,即,得,故(4)错误.故答案为:(1)(3).【点睛】本题主要考查了指数函数、对数函数与幂函数的定义域与值域的求解,函数的奇偶性和单调性的判定,对数的运算,属于函数知识的综合应用,是中档题.13、##【解析】用辅助角公式将函数整理成的形式,即可求出最小值【详解】,,所以最小值为故答案为:14、【解析】设函数,再利用复合函数的单调性原理求解.【详解】解:由题得函数的定义域为.设函数,因为函数的单调递减区间为,单调递增区间为,函数是单调递减函数,由复合函数的单调性得函数y=的单调递增区间为.故答案为:15、【解析】结合题意,得到圆心到直线的距离,结合点到直线距离公式,计算a,即可【详解】结合题意可知圆心到直线的距离,所以结合点到直线距离公式可得,结合,所以【点睛】考查了直线与圆的位置关系,考查了点到直线距离公式,难度中等16、C【解析】先求得函数的零点为,进而可得的零点满足,由二次函数的图象与性质即可得解.【详解】由题意,函数单调递增,且,所以函数的零点为,设的零点为,则,则,由于必过点,故要使其零点在区间上,则或,即或,所以,故选:C.【点睛】关键点点睛:解决本题的关键是将题目条件转化为函数零点的范围,再由二次函数的图象与性质即可得解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】设,由动点P满足,列出方程,即可求出曲线C的方程设直线l在坐标轴上的截距为a,当时,直线l与曲线C有两个公共点,已知矛盾;当时,直线方程与圆的方程联立方程组,根据由直线l与曲线C只有一个公共点,即可求出直线l的方程【详解】设,点,,动点P满足,整理得:,曲线C方程为设直线l的横截距为a,则直线l的纵截距也为a,当时,直线l过,设直线方程为把代入曲线C的方程,得:,,直线l与曲线C有两个公共点,已知矛盾;当时,直线方程为,把代入曲线C的方程,得:,直线l与曲线C只有一个公共点,,解得,直线l的方程为或【点睛】本题主要考查了曲线轨迹方程的求法,以及直线与圆的位置关系的应用,其中解答中熟记直接法求轨迹的方法,以及合理使用直线与圆的位置关系是解答的关键,着重考查了推理与运算能力,以及转化思想的应用,属于基础题18、(1)详见解析;(2)详见解析【解析】(1)连结和,由条件可证得和,从而得到∥.(2)结合题意可得直线和必相交,根据线面关系再证明该交点直线上即可得到结论【详解】证明:(1)如图,连结和,在正方体中,,∵,∴,又,,∴又在正方体中,,,∴,又,∴同理可得,又,∴∴∥.(2)由题意可得(或者和不平行),又由(1)知∥,所以直线和必相交,不妨设,则,又,所以,同理因为,所以,所以、、三条直线交于一点【点睛】(1)证明两直线平行时,可根据三种平行间的转化关系进行证明,也可利用线面垂直的性质进行证明,解题时要注意合理选择方法进行求解(2)证明三线共点的方法是:先证明其中的两条直线相交,再证明该交点在第三条直线上.解题时要依据空间中的线面关系及三个公理,并结合图形进行求解19、(1),(2)【解析】(1)先求出,再由同角三角函数基本关系求解即可;(2)根据角的变换,再由两角差的余弦公式求解.【小问1详解】∵,∴.∵,∴,∴,且,解得,∴,【小问2详解】∵,,∴,∴,∴.20、(1)2;(2)见解析【解析】:(1)利用奇函数定义f(-x)=-f(x)中特殊值求a的值;(2)按按取点,作差,变形,判断的过程来即可试题解析:(1)∵是定义域为的奇函数,∴,即,∴,即解得:.(2)由(1)知,,任取,且,则由,可知:∴,,,∴,即.∴函数在上是增函数.点晴:本题属于对函数单调性应用的考察,若函数在区间上单调递增,则时,有,事实上,若,则,这与矛盾,类似地,若在区间上单调递减,则当时有;据此可以解不等式,由函数值的大小,根据单调性就可以得自变量的大小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年八年级下册地理期末复习冲刺卷
- K003-时间管理技能
- 疝气患者的舒适护理
- 远嫁求职面试技巧指南
- 2025年杭州市公安局上城区分局警务辅助人员招聘60人备考题库参考答案详解
- 2026年G1工业锅炉司炉复审考试题及答案
- 企业认知实训报告
- 搬迁服务合同范本
- 拆迁分割合同范本
- 商场安保合同范本
- 雨课堂学堂在线学堂云《芊礼-谦循-送给十八岁女大学生的成人之礼(中华女子学院 )》单元测试考核答案
- 智慧农贸市场建设项目报告与背景分析
- 护理部竞选副主任
- 【10篇】新版部编六年级上册语文课内外阅读理解专项练习题及答案
- 雨课堂学堂云在线《人工智能原理》单元测试考核答案
- 2024届辽宁省抚顺市名校数学九年级第一学期期末达标检测模拟试题含解析
- 老年人行为评估
- 区域经济空间结构理论之增长极理论
- 国开电大本科《人文英语4》机考总题库
- 细胞存活曲线的推导王大奖
- 2023年足球俱乐部试训个人简历
评论
0/150
提交评论