版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆九龙坡区2026届高一上数学期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数在的图象大致为()A. B.C. D.2.已知函数(ω>0),对任意x∈R,都有≤,并且在区间上不单调,则ω的最小值是()A.6 B.7C.8 D.93.命题“,”的否定为()A., B.,C, D.,4.函数y=8x2-(m-1)x+m-7在区间(-∞,-]上单调递减,则m的取值范围为()A. B.C. D.5.函数f(x)=-4x+2x+1的值域是()A. B.C. D.6.已知函数为奇函数,且当时,,则()A. B.C. D.7.一梯形的直观图是一个如图所示的等腰梯形,且该梯形的面积为,则原梯形的面积为()A.2 B.C.2 D.48.角度化成弧度为()A. B.C. D.9.某班有50名学生,编号从1到50,现在从中抽取5人进行体能测试,用系统抽样确定所抽取的第一个样本编号为3,则第四个样本编号是A.13 B.23C.33 D.4310.已知函数的图象关于直线对称,且,则的最小值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知角的终边经过点,则__12.函数的最小值为______13.函数的零点个数为___14.已知f(x)=mx3-nx+1(m,n∈R),若f(-a)=3,则f(a)=______15.如图,直四棱柱的底面是边长为1的正方形,侧棱长,则异面直线与的夹角大小等于______16.已知点是角终边上任一点,则__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,.(1)求;(2)若角的终边上有一点,求.18.如图,在圆柱中,,分别是上、下底面圆的直径,且,,分别是圆柱轴截面上的母线.(1)若,圆柱的母线长等于底面圆的直径,求圆柱的表面积.(2)证明:平面平面.19.阅读材料:我们研究了函数的单调性、奇偶性和周期性,但是这些还不能够准确地描述出函数的图象,例如函数和,虽然它们都是增函数,图象在上都是上升的,但是却有着显著的不同.如图1所示,函数的图象是向下凸的,在上任意取两个点,函数的图象总是在线段的下方,此时函数称为下凸函数;函数的图象是向上凸的,在上任意取两个点,函数的图象总是在线段的上方,则函数称为上凸函数.具有这样特征的函数通常称做凸函数.定义1:设函数是定义在区间I上的连续函数,若,都有,则称为区间I上的下凸函数.如图2.下凸函数的形状特征:曲线上任意两点之间的部分位于线段的下方.定义2:设函数是定义在区间I上的连续函数,若,都有,则称为区间I上的上凸函数.如图3.上凸函数的形状特征:曲线上任意两点之间的部分位于线段的上方.上凸(下凸)函数与函数的定义域密切相关的.例如,函数在为上凸函数,在上为下凸函数.函数的奇偶性和周期性分别反映的是函数图象的对称性和循环往复,属于整体性质;而函数的单调性和凸性分别刻画的是函数图象的升降和弯曲方向,属于局部性质.关于函数性质的探索,对我们的启示是:在认识事物和研究问题时,只有从多角度、全方位加以考查,才能使认识和研究更加准确.结合阅读材料回答下面的问题:(1)请尝试列举一个下凸函数:___________;(2)求证:二次函数是上凸函数;(3)已知函数,若对任意,恒有,尝试数形结合探究实数a的取值范围.20.(1)计算:(2)已知,求的值21.设函数.(1)求函数的最小正周期和对称轴方程;(2)求函数在上的最大值与最小值及相对应的的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】先判断出函数的奇偶性,然后根据的符号判断出的大致图象.【详解】因为,所以,为奇函数,所以排除A项,又,所以排除B、C两项,故选:D【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.2、B【解析】根据,得为函数的最大值,建立方程求出的值,利用函数的单调性进行判断即可【详解】解:对任意,都有,为函数的最大值,则,,得,,在区间,上不单调,,即,即,得,则当时,最小.故选:B.3、B【解析】根据特称命题的否定为全称命题可得.【详解】根据特称命题的否定为全称命题,可得命题“,”的否定为“,”故选:B.4、A【解析】求出函数的对称轴,得到关于m的不等式,解出即可【详解】函数的对称轴是,若函数在区间上单调递减,则,解得:m≥0,故选A【点睛】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键5、A【解析】令t=2x(t>0),则原函数化为g(t)=-t2+t+1(t>0),然后利用二次函数求值域【详解】令t=2x(t>0),则原函数化为g(t)=-t2+t+1(t>0),其对称轴方程为t=,∴当t=时,g(t)有最大值为∴函数f(x)=-4x+2x+1的值域是故选A【点睛】本题考查利用换元法及二次函数求值域,是基础题6、C【解析】根据奇函数的定义得到,又由解析式得到,进而得到结果.【详解】因为函数为奇函数,故得到当时,,故选:C.7、D【解析】由斜二测画法原理,把该梯形的直观图还原为原来的梯形,结合图形即可求得面积【详解】由斜二测画法原理,把该梯形的直观图还原为原来的梯形,如图所示;设该梯形的上底为a,下底为b,高为h,则直观图中等腰梯形的高为h′=hsin45°;∵等腰梯形的体积为(a+b)h′=(a+b)•hsin45°=,∴(a+b)•h==4,∴该梯形的面积为4故选D【点睛】本题考查了平面图形的直观图的还原与求解问题,解题时应明确直观图与原来图形的区别和联系,属于基础题8、A【解析】根据题意,结合,即可求解.【详解】根据题意,.故选:A.9、C【解析】根据系统抽样的定义,求出抽取间隔,即可得到结论.【详解】由题意,名抽取名学生,则抽取间隔为,则抽取编号为,则第四组抽取的学生编号为.故选:【点睛】本题考查系统抽样,等间距抽取,属于简单题.10、D【解析】由辅助角公式可得,由函数关于直线对称,可得,可取.从而可得,由此结合,可得一个最大值一个最小值,从而可得结果.【详解】,,函数关于直线对称,,即,,故可取故,,即可得:,故可令,,,,即,,其中,,,故选D【点睛】本题主要考查辅助角公式的应用、三角函数的最值、三角函数的对称性,转化与划归思想的应用,属于难题.由函数可求得函数的周期为;由可得对称轴方程;由可得对称中心横坐标.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据终边上的点可得,再应用差角正弦公式求目标式的值.【详解】由题设,,所以.故答案为:.12、【解析】根据,并结合基本不等式“1”的用法求解即可.【详解】解:因为,所以,当且仅当时,等号成立故函数的最小值为.故答案为:13、2【解析】当x≤0时,令函数值为零解方程即可;当x>0时,根据零点存在性定理判断即可.【详解】当x≤0时,,∵,故此时零点为;当x>0时,在上单调递增,当x=1时,y<0,当x=2时,y>0,故在(1,2)之间有唯一零点;综上,函数y在R上共有2个零点.故答案为:2.14、【解析】直接证出函数奇偶性,再利用奇偶性得解【详解】由题意得,所以,所以为奇函数,所以,所以【点睛】本题是函数中的给值求值问题,一般都是利用函数的周期性和奇偶性把未知的值转化到已知值上,若给点函数为非系非偶函数可试着构造一个新函数为奇偶函数从而求解15、【解析】由直四棱柱的底面是边长为1的正方形,侧棱长可得由知就是异面直线与的夹角,且所以=60°,即异面直线与的夹角大小等于60°.考点:1正四棱柱;2异面直线所成角16、##【解析】将所求式子,利用二倍角公式和平方关系化为,然后由商数关系弦化切,结合三角函数的定义即可求解.【详解】解:因为点是角终边上任一点,所以,所以,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由条件求得,将所求式展开计算(2)由条件求得与,再由二倍角与两角和的正切公式计算小问1详解】,,则故【小问2详解】角终边上一点,则由(1)可得,18、(1).(2)证明见详解【解析】(1)借助圆柱的母线垂直于底面构造直角三角形计算可得半径,然后可得表面积;(2)构造平行四边形证明,结合已知可证.【小问1详解】连接CF、DF,因为CD为直径,记底面半径为R,EF=2R则又解得R=2圆柱的表面积.【小问2详解】连接、、、由圆柱性质知且且四边形为平行四边形又平面CDE,平面CDE平面CDE同理,平面CDE又,平面ABH,平面ABH平面平面.19、(1),;(2)证明见解析;(3).【解析】(1)根据下凸函数的定义举例即可;(2)利用上凸函数定义证明即可;(3)根据(2)中结论,结合条件,函数满足上凸函数定义,根据数形结合求得参数取值范围.【小问1详解】,;【小问2详解】对于二次函数,,满足,即,满足上凸函数定义,二次函数是上凸函数.【小问3详解】由(2)知二次函数是上凸函数,同理易得二次函数为下凸函数,对于函数,其图像可以由两个二次函数的部分图像组成,如图所示,若对任意,恒有,则函数满足上凸函数定义,即,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年东莞实验中学高中物理、化学临聘教师招聘备考题库及参考答案详解一套
- 2025年阿勒泰地区吉木乃县应急管理局面向社会公开招聘政府专职消防员6人备考题库有答案详解
- 2025年衢州市公安局第四期面向社会公开招聘警务辅助人员备考题库完整答案详解
- 2025年大健康产业发展规划可行性研究报告
- 拆旧承揽合同范本
- 2025年新型材料在建筑中的应用可行性研究报告
- 培训学校合同范本
- 墓地迁移定协议书
- 墙面租协议书范本
- 2026届上海财大北郊高级中学语文高三上期末经典试题含解析
- 动物尸体剖检(动物病理学课件)
- 客舱服务(空中乘务专业)全套教学课件
- 光伏电站收益率测算模型(带财务表)
- 银行个人贷款抵押合同
- 《羽毛球运动》优质课件PPT
- 三轴转台仿真设计设计说明书
- 2015年版干部履历表
- 陶棍陶板考察报告
- q gw2sjss.65金风风力发电机组防腐技术rna部分归档版
- 陕西北元化工集团有限公司 100 万吨 - 年聚氯乙烯项目竣工验收监测报告
- 向知识分子介绍佛教剖析
评论
0/150
提交评论