安徽省合肥市新城高升学校2026届数学高一上期末学业质量监测模拟试题含解析_第1页
安徽省合肥市新城高升学校2026届数学高一上期末学业质量监测模拟试题含解析_第2页
安徽省合肥市新城高升学校2026届数学高一上期末学业质量监测模拟试题含解析_第3页
安徽省合肥市新城高升学校2026届数学高一上期末学业质量监测模拟试题含解析_第4页
安徽省合肥市新城高升学校2026届数学高一上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省合肥市新城高升学校2026届数学高一上期末学业质量监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,,且与的夹角为锐角,则的取值范围是A. B.C. D.2.如图是一算法的程序框图,若输出结果为,则在判断框中应填入的条件是()A. B.C. D.3.中,设,,为中点,则A. B.C. D.4.下列六个关系式:⑴其中正确的个数为()A.6个 B.5个C.4个 D.少于4个5.若,,,则有A. B.C. D.6.已知定义在上的奇函数,满足,当时,,则函数在区间上的所有零点之和为()A. B.C. D.7.已知角的顶点在坐标原点,始边在轴非负半轴上,且角的终边上一点,则()A. B.C. D.8.已知平行四边形的对角线相交于点点在的内部(不含边界).若则实数对可以是A. B.C. D.9.已知a>0,则当取得最小值时,a值为()A. B.C. D.310.下列函数中既是奇函数,又是减函数的是()A. B.C D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数是定义在的偶函数,且当时,若函数有8个零点,分别记为,,,,,,,,则的取值范围是______.12.设函数f(x)=,则f(-1)+f(1)=______13.已知向量,,若,则与的夹角为______14.若直线与垂直,则________15.过点P(4,2)并且在两坐标轴上截距相等的直线方程为(化为一般式)________.16.若sinθ=,求的值_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知定义域为的奇函数.(1)求的值;(2)用函数单调性的定义证明函数在上是增函数.18.已知函数且.(1)若函数的图象过点,求的值;(2)当时,若不等式对任意恒成立,求实数的取值范围19.在底面为平行四边形的四棱锥中,,平面,且,点是的中点(Ⅰ)求证:;(Ⅱ)求证:平面;20.某药物研究所开发了一种新药,根据大数据监测显示,病人按规定的剂量服药后,每毫升血液中含药量y(微克)与时间x(小时)之间的关系满足:前1小时内成正比例递增,1小时后按指数型函数y=max−1(m,a为常数,且0<a<1)图象衰减.如图是病人按规定的剂量服用该药物后,每毫升血液中药物含量随时间变化的曲线.(1)当a=时,求函数y=f(x)的解析式,并求使得y≥1的x的取值范围;(2)研究人员按照M=的值来评估该药的疗效,并测得M≥时此药有疗效.若病人某次服药后测得x=3时每毫升血液中的含药量为y=8,求此次服药有疗效的时长.21.如图,在平面直角坐标系中,点为单位圆与轴正半轴的交点,点为单位圆上的一点,且,点沿单位圆按逆时针方向旋转角后到点.(1)当时,求的值;(2)设,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】因为与夹角为锐角,所以cos<,>>0,且与不共线,由得,k>-2且,故选B考点:本题主要考查平面向量的坐标运算,向量夹角公式点评:基础题,由夹角为锐角,可得到k得到不等式,应注意夹角为0°时,夹角的余弦值也大于0.2、B【解析】依次执行循坏结构,验证输出结果即可.【详解】根据程序框图,运行结构如下:第一次循环,,第二次循环,,第三次循环,,此时退出循环,故应填:.故选:B.3、C【解析】分析:直接利用向量的三角形法则求.详解:由题得,故答案为C.点睛:(1)本题主要考查向量的加法和减法法则,意在考查学生对这些基础知识的掌握水平和转化能力.(2)向量的加法法则:,向量的减法法则:.4、C【解析】根据集合自身是自身的子集,可知①正确;根据集合无序性可知②正确;根据元素与集合只有属于与不属于关系可知③⑤不正确;根据元素与集合之间的关系可知④正确;根据空集是任何集合的子集可知⑥正确,即正确的关系式个数为个,故选C.点睛:本题主要考查了:(1)点睛:集合的三要素是:确定性、互异性和无序性,;(2)元素和集合之间是属于关系,子集和集合之间是包含关系;(3)不含任何元素的集合称为空集,空集是任何集合的子集5、C【解析】根据指数函数和对数函数的单调性分别将与作比较,从而得到结果.【详解】本题正确选项:【点睛】本题考查根据指数函数、对数函数单调性比较大小的问题,常用方法是采用临界值的方式,通过与临界值的大小关系得到所求的大小关系.6、D【解析】推导出函数是周期为的周期函数,且该函数的图象关于直线对称,令,可得出,转化为函数与函数图象交点横坐标之和,数形结合可得出结果.【详解】由于函数为上的奇函数,则,,所以,函数是周期为的周期函数,且该函数的图象关于直线对称,令,可得,则函数在区间上的零点之和为函数与函数在区间上图象交点横坐标之和,如下图所示:由图象可知,两个函数的四个交点有两对关于点对称,因此,函数在区间上的所有零点之和为.故选:D.【点睛】本题考查函数零点之和,将问题转化为两个函数的交点,结合函数图象的对称性来求解是解答的关键,考查数形结合思想的应用,属于中等题.7、D【解析】根据任意角的三角函数的定义即可求出的值,根据二倍角的正弦公式,即可求出的值【详解】由题意,角的顶点在坐标原点,始边在轴非负半轴上,且角的终边上一点,所以,,所以故选:D8、B【解析】分析:根据x,y值确定P点位置,逐一验证.详解:因为,所以P在线段BD上,不合题意,舍去;因为,所以P在线段OD外侧,符合题意,因为,所以P在线段OB内侧,不合题意,舍去;因为,所以P在线段OD内侧,不合题意,舍去;选B.点睛:若,则三点共线,利用这个充要关系可确定点的位置.9、C【解析】利用基本不等式求最值即可.【详解】∵a>0,∴,当且仅当,即时,等号成立,故选:C10、A【解析】根据对数、指数、一次函数的单调性判断BCD,根据定义判断的奇偶性.【详解】因为在定义域内都是增函数,所以BCD错误;因为,所以函数为奇函数,且在上单调递减,A正确.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由偶函数的对称性,将转化为,再根据二次函数的对称性及对数函数的性质可进一步转化为,结合利用二次函数的性质即可求解.【详解】解:因为函数有8个零点,所以直线与函数图像交点有8个,如图所示:设,因为函数是定义在的偶函数,所以函数的图像关于轴对称,所以,且由二次函数对称性有,由有,所以又,所以,所以,故答案为:.12、3【解析】直接利用函数的解析式,求函数值即可【详解】函数f(x)=,则==3故答案为3【点睛】本题考查分段函数的应用,函数值的求法,考查计算能力13、##【解析】先求向量的模,根据向量积,即可求夹角.【详解】解:,,所以与的夹角为.故答案为:14、【解析】根据两直线垂直的等价条件列方程,解方程即可求解.【详解】因为直线与垂直,所以,解得:,故答案为:.15、或【解析】根据直线在两坐标轴上截距相等,则截距可能为也可能不为,再结合直线方程求法,即可对本题求解【详解】由题意,设直线在两坐标轴上的截距均为,当时,设直线方程为:,因为直线过点,所以,即,所以直线方程为:,即:,当时,直线过点,且又过点,所以直线的方程为,即:,综上,直线的方程为:或.故答案为:或【点睛】本题考查直线方程的求解,考查能力辨析能力,应特别注意,截距相等,要分截距均为和均不为两种情况分别讨论.16、6【解析】先通过诱导公式对原式进行化简,然后通分,进而通过同角三角函数的平方关系将原式转化为只含的式子,最后得到答案.【详解】原式=+,因为,所以.所以.故答案为:6.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2;(2)见解析【解析】:(1)利用奇函数定义f(-x)=-f(x)中特殊值求a的值;(2)按按取点,作差,变形,判断的过程来即可试题解析:(1)∵是定义域为的奇函数,∴,即,∴,即解得:.(2)由(1)知,,任取,且,则由,可知:∴,,,∴,即.∴函数在上是增函数.点晴:本题属于对函数单调性应用的考察,若函数在区间上单调递增,则时,有,事实上,若,则,这与矛盾,类似地,若在区间上单调递减,则当时有;据此可以解不等式,由函数值的大小,根据单调性就可以得自变量的大小关系.本题中可以利用对称性数形结合即可.18、(1);(2)﹒【解析】(1)将点代入解析式,即可求出的值;(2)换元法,令,然后利用函数思想求出新函数的最小值即可【小问1详解】由已知得,∴,解得,结合,且,∴;【小问2详解】由已知得,当,时恒成立,令,,且,,,∵在,上单调递增,故,∵是单调递增函数,故,故即为所求,即的范围为19、(1)见解析;(2)见解析【解析】(Ⅰ)由已知得,,从而平面,由此能证明;(Ⅱ)连接与相交于,连接,由已知得,由此能证明平面试题解析:(Ⅰ)由平面可得AC,又,故AC平面PAB,所以.(Ⅱ)连BD交AC于点O,连EO,则EO是△PDB的中位线,所以EOPB又因为面,面,所以PB平面20、(1),(2)小时【解析】(1)根据图像求出解析式;令直接解出的取值范围;(2)先求出,得到,根据单调性计算出解集即可.【小问1详解】当时,与成正比例,设为,则;所以,当时,故当时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论