版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
哈尔滨市重点中学2026届数学高一上期末学业质量监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将进货单价为40元的商品按60元一个售出时,能卖出400个.已知该商品每个涨价1元,其销售量就减少10个,为了赚得最大利润,售价应定为A.每个70元 B.每个85元C.每个80元 D.每个75元2.已知,若,则m的值为()A.1 B.C.2 D.43.《易经》是我国古代预测未来的著作,其中同时抛掷三枚古钱币观察正反面进行预测未知,则抛掷一次时出现两枚正面一枚反面的概率为A. B.C. D.4.若不等式的解集为,那么不等式的解集为()A. B.或C. D.或5.已知,则“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.函数和都是减函数的区间是A. B.C. D.7.下列各角中,与终边相同的角为()A. B.160°C. D.360°8.已知为圆的两条互相垂直的弦,且垂足为,则四边形面积的最大值为()A.10 B.13C.15 D.209.设,是两条不同的直线,是一个平面,则下列命题正确的是A.若,,则 B.若,,则C.若,,则 D.若,,则10.已知函数,将图象向右平移个单位长度得到函数的图象,若对任意,都有成立,则的值为A. B.1C. D.2二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则___________.12.计算:______.13.已知正实数,,且,若,则的值域为__________14.设函数,则____________15.函数的部分图像如图所示,轴,则_________,_________16.若方程组有解,则实数的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.有一种新型的洗衣液,去污速度特别快,已知每投放个(,且)单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度(克/升)随着时间(分钟)变化的函数关系式近似为,其中.若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液浓度不低于克/升时,它才能起到有效去污的作用.(1)若只投放一次个单位的洗衣液,当两分钟时水中洗衣液的浓度为克/升,求的值;(2)若只投放一次个单位的洗衣液,则有效去污时间可达几分钟?(3)若第一次投放个单位的洗衣液,分钟后再投放个单位的洗衣液,则在第分钟时洗衣液是否还能起到有效去污的作用?请说明理由.18.设,关于的二次不等式的解集为,集合,满足,求实数的取值范围.19.某地区今年1月,2月,3月患某种传染病的人数分别为52,54,58为了预测以后各月的患病人数,甲选择的了模型,乙选择了模型,其中y为患病人数,x为月份数,a,b,c,p,q,r都是常数,结果4月,5月,6月份的患病人数分别为66,82,115,1你认为谁选择的模型较好?需说明理由2至少要经过多少个月患该传染病的人数将会超过2000人?试用你选择的较好模型解决上述问题20.已知函数为偶函数.(1)求的值;(2)若恒成立,求实数的取值范围.21.已知函数.(1)若不等式对于一切实数恒成立,求实数的取值范围;(2)若,解关于的不等式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】设定价每个元,利润为元,则,故当,时,故选A.考点:二次函数的应用.2、B【解析】依题意可得,列方程解出【详解】解:,,故选:3、C【解析】用列举法得出:抛掷三枚古钱币出现的基本事件的总数,进而可得出所求概率.【详解】抛掷三枚古钱币出现的基本事件共有:正正正,正正反,正反正,反正正,正反反,反正反,反反正,反反反8中,其中出现两正一反的共有3种,故概率为.故选C【点睛】本题主要考查古典概型,熟记概率的计算公式即可,属于常考题型.4、C【解析】根据题意,直接求解即可.【详解】根据题意,由,得,因为不等式的解集为,所以由,知,解得,故不等式的解集为.故选:C.5、B【解析】先由,得到,再由充分条件与必要条件的概念,即可得出结果.【详解】由解得,所以由“”能推出“”,反之,不能推出;因此“”是“”必要不充分条件.故选:B.【点睛】本题主要考查命题的必要不充分条件的判定,熟记充分条件与必要条件的概念即可,属于常考题型.6、A【解析】y=sinx是减函数的区间是,y=cosx是减函数的区间是[2k,2k+],,∴同时成立的区间为故选A.7、C【解析】由终边相同角的定义判断【详解】与终边相同角为,而时,,其它选项都不存在整数,使之成立故选:C8、B【解析】如图,作OP⊥AC于P,OQ⊥BD于Q,则|OP|2+|OQ|2=|OM|2=5,∴|AC|2+|BD|2=4(9-|OP|2)+4(9-|OQ|2)=52则|AC|·|BD|=,当时,|AC|·|BD|有最大值26,此时S四边形ABCD=|AC|·|BD|=×26=13,∴四边形ABCD面积的最大值为13故选B点睛:直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小9、B【解析】利用可能平行判断,利用线面平行的性质判断,利用或与异面判断,与可能平行、相交、异面,判断.【详解】,,则可能平行,错;,,由线面平行的性质可得,正确;,,则,与异面;错,,,与可能平行、相交、异面,错,.故选B.【点睛】本题主要考查线面平行的判定与性质、线面面垂直的性质,属于中档题.空间直线、平面平行或垂直等位置关系命题的真假判断,除了利用定理、公理、推理判断外,还常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.10、D【解析】利用辅助角公式化简的解析式,再利用正弦型函数的图象变换规律,正弦函数的图象的对称性,求得的值【详解】,(其中,),将图象向右平移个单位长度得到函数的图象,得到,∴,,解得,故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、##-0.75【解析】将代入函数解析式计算即可.【详解】令,则,所以.故答案为:12、【解析】利用指数幂和对数的运算性质可计算出所求代数式的值.【详解】原式.故答案为:.【点睛】本题考查指数与对数的计算,考查指数幂与对数运算性质的应用,考查计算能力,属于基础题.13、【解析】因为,所以.因为且,.所以,所以,所以,.则的值域为.故答案为.14、2【解析】利用分段函数由里及外逐步求解函数的值即可.【详解】解:由已知,所以,故答案为:.【点睛】本题考查分段函数的应用,函数值的求法,考查计算能力.15、①.2②.##【解析】根据最低点的坐标和函数的零点,可以求出周期,进而可以求出的值,再把最低点的坐标代入函数解析式中,最后求出的值.【详解】通过函数的图象可知,点B、C的中点为,与它隔一个零点是,设函数的最小正周期为,则,而,把代入函数解析式中,得.故答案为:;16、【解析】,化为,要使方程组有解,则两圆相交或相切,,即或,,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)分钟;(3)见详解.【解析】(1)由只投放一次个单位的洗衣液,当两分钟时水中洗衣液的浓度为克/升,根据已知可得,,代入可求出的值;(2)由只投放一次个单位的洗衣液,可得,分、两种情况解不等式即可求解;(3)令,由题意求出此时的值并与比较大小即可.【详解】(1)因为,当两分钟时水中洗衣液的浓度为克/升时,可得,即,解得;(2)因为,所以,当时,,将两式联立解之得;当时,,将两式联立解之得,综上可得,所以若只投放一次个单位的洗衣液,则有效去污时间可达分钟;(3)当时,由题意,因为,所以在第分钟时洗衣液能起到有效去污的作用.【点睛】本题主要考查分段函数模型的选择和应用,其中解答本题的关键是正确理解水中洗衣液浓度不低于克/升时,它才能起到有效去污的作用,属中等难度题.18、【解析】由题意,求出方程的两根,讨论的正负,确定二次不等式的解集A的形式,然后结合数轴列出不等式求解即可得答案.【详解】解:由题意,令,解得两根为,由此可知,当时,解集,因为,所以的充要条件是,即,解得;当时,解集,因为,所以的充要条件是,即,解得;综上,实数的取值范围为.19、(1)应将作为模拟函数,理由见解析;(2)个月.【解析】根据前3个月的数据求出两个函数模型的解析式,再计算4,5,6月的数据,与真实值比较得出结论;由(1),列不等式求解,即可得出结论【详解】由题意,把,2,3代入得:,解得,,,所以,所以,,;把,2,3代入,得:,解得,,,所以,所以,,;、、更接近真实值,应将作为模拟函数令,解得,至少经过11个月患该传染病的人数将会超过2000人【点睛】本题主要考查了函数的实际应用问题,以及指数与对数的运算性质的应用,其中解答中认真审题,正确理解题意,求解函数的解析式是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.20、(1)(2)或【解析】(1)根据奇偶函数的定义可得,列出方程,结合对数运算公式解方程即可;(2)根据指数、对数函数的性质求出函数,进而得到,解不等式即可.【小问1详解】∵是偶函数,∴,即,∴【小问2详解】由(1)知,∴又由解得,∴当且仅当x=0时等号成立,∴∴又∵恒
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年佛山市交通发展有限公司招聘备考题库及1套参考答案详解
- 2025年上海城建职业学院面向校内外选拔图文备考题库中心副主任备考题库有答案详解
- 2025年北京市海淀区实验小学教育集团招聘备考题库及1套完整答案详解
- 市级机关文印服务中心2025年编外用工招聘备考题库及参考答案详解
- 2025年北医三院妇产科妇科门诊医师招聘备考题库含答案详解
- 广西壮族自治区胸科医院(广西壮族自治区第四人民医院)2026年上半年工作人员招聘备考题库完整答案详解
- 2025年锦州市教育局所属学校赴高校(辽宁师范大学同层次及以上)现场公开招聘工作人员(教师)备考题库带答案详解
- 河北高速公路集团有限公司2026年校园招聘181人备考题库及1套完整答案详解
- 2025年佛山市南海区西樵镇社区卫生服务中心公开招聘工作人员8人备考题库及1套完整答案详解
- 2025年湖北工程学院第二批专项公开招聘专任教师10人备考题库及完整答案详解一套
- 2025年青岛市公安局警务辅助人员招录笔试考试试题(含答案)
- 科技园区入驻合作协议
- 电大专科《个人与团队管理》期末答案排序版
- 山东科技大学《基础化学(实验)》2025-2026学年第一学期期末试卷
- 2025年吐鲁番辅警招聘考试题库必考题
- 护理放射科小讲课
- 机关党支部2025年度抓基层党建工作述职报告
- 2025年生态环境监测系统建设可行性研究报告及总结分析
- 2023北京海淀高一(上)期末英语试卷含答案
- 离心泵课件教学课件
- 我眼中的爸爸妈妈课件
评论
0/150
提交评论