版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届贵州黔东南州三校联考高二数学第一学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,a,b,c分别为角A,B,C的对边,已知,,的面积为,则()A. B.C. D.2.椭圆的长轴长是短轴长的2倍,则离心率()A. B.C. D.3.已知离散型随机变量X的分布列如下:X123P则数学期望()A. B.C.1 D.24.已知椭圆的右焦点为F,短轴的一个端点为P,直线与椭圆相交于A、B两点.若,点P到直线l的距离不小于,则椭圆C离心率的取值范围为()A. B.C. D.5.数列2,,9,,的一个通项公式可以是()A. B.C. D.6.已知等差数列满足,则等于()A. B.C. D.7.已知三棱锥O—ABC,点M,N分别为线段AB,OC的中点,且,,,用,,表示,则等于()A. B.C. D.8.已知圆,为圆外的任意一点,过点引圆的两条切线、,使得,其中、为切点.在点运动的过程中,线段所扫过图形的面积为()A. B.C. D.9.设两个变量与之间具有线性相关关系,相关系数为,回归方程为,那么必有()A.与符号相同 B.与符号相同C.与符号相反 D.与符号相反10.已知等比数列,且,则()A.16 B.32C.24 D.6411.等差数列中,已知,,则的前项和的最小值为()A. B.C. D.12.在正四面体中,棱长为2,且E是棱AB中点,则的值为A. B.1C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列为严格递增数列,且对任意,都有且.若对任意恒成立,则________14.已知正数满足,则的最小值是__________.15.阿波罗尼斯与阿基米德、欧几里得被称为亚历山大时期的数学三巨匠.“阿波罗尼斯圆”是他的代表成果之一:平面上动点P到两定点A,B的距离之比满足(且,t为常数),则点的轨迹为圆.已知在平面直角坐标系中,,,动点P满足,则P点的轨迹为圆,该圆方程为_________;过点的直线交圆于两点,且,则_________16.根据抛物线的光学性质可知,从抛物线的焦点发出的光线经该抛物线反射后与对称轴平行,一条平行于对称轴的光线经该抛物线反射后会经过抛物线的焦点.如图所示,从沿直线发出的光线经抛物线两次反射后,回到光源接收器,则该光线经过的路程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)等差数列的前n项和为,已知(1)求的通项公式;(2)若,求n的最小值18.(12分)在平面直角坐标系中,双曲线的左、右两个焦点为、,动点P满足(1)求动点P的轨迹E的方程;(2)设过且不垂直于坐标轴的动直线l交轨迹E于A、B两点,问:线段上是否存在一点D,使得以DA、DB为邻边的平行四边形为菱形?若存在,请给出证明:若不存在,请说明理由19.(12分)已知圆C的方程为.(1)直线l1过点P(3,1),倾斜角为45°,且与圆C交于A,B两点,求AB的长;(2)求过点P(3,1)且与圆C相切的直线l2的方程.20.(12分)如图,在四棱锥中,底面为直角梯形,平面平面,,.(1)证明:平面;(2)已知,,,且直线与平面所成角的正弦值为,求平面与平面夹角的余弦值.21.(12分)如图,在三棱锥中,,点为线段上的点.(1)若平面,试确定点的位置,并说明理由;(2)若,,,在(1)成立的前提下,求二面角的余弦值.22.(10分)已知数列是公比为2的等比数列,是与的等差中项(1)求数列的通项公式;(2)若,求数列的前n项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用面积公式,求出,进而求出,利用余弦定理求出,再利用正弦定理求出【详解】由面积公式得:,因为的面积为,所以,求得:因,所以由余弦定理得:所以由正弦定理得:,即,解得:故选:C2、D【解析】根据长轴长是短轴长的2倍,得到,利用离心率公式即可求得答案.【详解】∵,∴,故,故选:D3、D【解析】利用已知条件,结合期望公式求解即可【详解】解:由题意可知:故选:D4、D【解析】设椭圆的左焦点为,由题可得,由点P到直线l的距离不小于可得,进而可求的范围,即可得出离心率范围.【详解】设椭圆的左焦点为,P为短轴的上端点,连接,如图所示:由椭圆的对称性可知,A,B关于原点对称,则,又,∴四边形为平行四边形,∴,又,解得:,点P到直线l距离:,解得:,即,∴,∴.故选:D.【点睛】关键点睛:本题考查椭圆离心率的求解,解题的关键是由椭圆定义得出,再根据已知条件得出.5、C【解析】用检验法,由通项公式验证是否符合数列各项,结合排除法可得【详解】第一项为正数,BD中求出第一项均为负数,排除,而AC均满足,A中,,排除A,C中满足,,,故选:C6、A【解析】利用等差中项求出的值,进而可求得的值.【详解】因为得,因此,.故选:A.7、A【解析】利用空间向量基本定理进行计算.【详解】.故选:A8、D【解析】连接、、,分析可知四边形为正方形,求出点的轨迹方程,分析可知线段所扫过图形为是夹在圆和圆的圆环,利用圆的面积公式可求得结果.【详解】连接、、,由圆的几何性质可知,,又因为且,故四边形为正方形,圆心,半径为,则,故点的轨迹方程为,所以,线段扫过的图形是夹在圆和圆的圆环,故在点运动的过程中,线段所扫过图形的面积为.故选:D.9、A【解析】利用相关系数的性质,分析即得解【详解】相关系数r为正,表示正相关,回归直线方程上升,r为负,表示负相关,回归直线方程下降,与r的符号相同故选:A10、A【解析】由等比数列的定义先求出公比,然后可解..【详解】,得故选:A11、B【解析】由等差数列的性质将转化为,而,可知数列是递增数,从而可求得结果【详解】∵等差数列中,,∴,即.又,∴的前项和的最小值为故选:B12、A【解析】根据题意,由正四面体的性质可得:,可得,由E是棱中点,可得,代入,利用数量积运算性质即可得出.【详解】如图所示由正四面体的性质可得:可得:是棱中点故选:【点睛】本题考查空间向量的线性运算,考查立体几何中的垂直关系,考查转化与化归思想,属于中等题型.二、填空题:本题共4小题,每小题5分,共20分。13、66【解析】根据恒成立和严格递增可得,然后利用递推求出,的值,不难发现在此两项之间的所有项为连续正整数,于是可得,,然后可解.【详解】因为,且数列为严格递增数列,所以或,若,则(矛盾),故由可得:,,,,,,,,,,,,,因,,,且数列为严格递增数列,,所以,,所以,所以故答案为:6614、8【解析】利用“1”代换,结合基本不等式求解.【详解】因为,,所以,当且仅当,即时等号成立,所以当时,取得最小值8.故答案为:8.15、①.②.【解析】设,根据可得圆的方程,利用垂径定理可求.【详解】设,则,整理得到,即.因为,故为的中点,过圆心作的垂线,垂足为,则为的中点,则,故,解得,故答案为:,.16、12【解析】求出,利用抛物线上的点到焦点的距离等于到准线的距离可得答案.【详解】由得,设,,由抛物线性质,与轴的交点即为抛物线的焦点,,,,所以,所以该光线经过的路程为12.故答案为:12.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)12【解析】(1)设的公差为d,根据题意列出方程组,求得的值,即可求解;(2)利用等差数的求和公式,得到,结合的单调性,即可求解.【小问1详解】解:设的公差为d,因为,可得,解得,所以,即数列的通项公式为【小问2详解】解:由,可得,根据二次函数的性质且,可得单调递增,因为,所以当时,,故n的最小值为1218、(1);(2)存在,理由见解析.【解析】(1)根据题意用定义法求解轨迹方程;(2)在第一问的基础上,设出直线l的方程,联立椭圆方程,用韦达定理表达出两根之和,两根之积,求出直线l的垂直平分线,从而得到D点坐标,证明出结论.【小问1详解】由题意得:,所以,,而,故动点P的轨迹E的方程为以点、为焦点的椭圆方程,由得:,,所以动点P的轨迹E的方程为;【小问2详解】存,理由如下:显然,直线l的斜率存在,设为,联立椭圆方程得:,设,,则,,要想以DA、DB为邻边的平行四边形为菱形,则点D为AB垂直平分线上一点,其中,,则,故AB的中点坐标为,则AB的垂直平分线为:,令得:,且无论为何值,,点D在线段上,满足题意.19、(1)(2)x=3或【解析】(1)首先利用点斜式求出直线的方程,再利用点到直线的距离公式求出圆心到直线的距离,最后利用垂直定理、勾股定理计算可得;(2)依题意可得点在圆外,分直线的斜率存在与不存在两种情况讨论,当直线的斜率不存在直线得到直线方程,但直线的斜率存在时设直线方程为,利用点到直线的距离公式得到方程,解得,即可得解;【小问1详解】解:根据题意,直线的方程为,即,则圆心到直线的距离为故;【小问2详解】解:根据题意,点在圆外,分两种情况讨论:当直线的斜率不存在时,过点的直线方程是,此时与圆C:相切,满足题意;当直线的斜率存在时,设直线方程为,即,直线与圆相切时,圆心到直线的距离为解得此时,直线的方程为,所以满足条件的直线的方程是或.20、(1)证明过程见解析;(2).【解析】(1)利用平面与平面垂直的性质得出直线与平面垂直,进而得出平面;(2)建立空间直角坐标系即可求解.【小问1详解】证明:因为平面平面,交线为且平面中,所以平面又平面所以又,且所以平面【小问2详解】解:由(1)知,平面且所以、、两两垂直因此以原点,建立如图所示的空间直角坐标系因为,,,设所以,,,,由(1)知,平面所以为平面的法向量且因为直线与平面所成角的正弦值为所以解得:所以,又,,所以,,,设平面与平面的法向量分别为:,所以,令,则令,则,,即设平面与平面夹角为则所以平面与平面夹角的余弦值为.21、(1)点为MC的中点,理由见解析;(2)【解析】(1)由线面垂直得到线线垂直,进而由三线合一得到点为MC的中点;(2)作出辅助线,找到二面角的平面角,利用勾股定理求出各边长,用余弦定理求出答案.【小问1详解】点为MC的中点,理由如下:因为平面,平面,所以,,又,由三线合一得:点为MC的中点【小问2详解】取AB的中点H,连接PH
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 聚醚醚酮医用材料生产项目实施方案
- 2025年中级工程测量员(测绘)考试试卷及答案
- 2025年保育员实操技能试题集及答案
- 土方开挖施工方案(2篇)
- 盘扣式脚手架项目规划设计方案
- 烟气道施工方案(3篇)
- 智能化建筑机械设备制造项目申请报告
- 简单基础施工方案(3篇)
- 传染病及突发公共卫生事件报告和处理服务规范
- 基层施工方案图纸(3篇)
- 《台式香肠烤制方法》课件
- 常用计量值控制图系数表
- 马克思主义经典著作选读智慧树知到课后章节答案2023年下四川大学
- 慢性阻塞性肺疾病急性加重期机械通气
- 传染病学智慧树知到课后章节答案2023年下温州医科大学
- 湿热灭菌验证方案及报告
- 工业区位因素及其变化高一地理人教版(2019)必修二
- 2022年5月CATTI英语三级口译实务真题(最全回忆版)
- 画法几何知到章节答案智慧树2023年浙江大学
- 少年宫剪纸社团活动记录
- 生命科学前沿技术智慧树知到答案章节测试2023年苏州大学
评论
0/150
提交评论