吉林省通榆一中2026届数学高一上期末复习检测试题含解析_第1页
吉林省通榆一中2026届数学高一上期末复习检测试题含解析_第2页
吉林省通榆一中2026届数学高一上期末复习检测试题含解析_第3页
吉林省通榆一中2026届数学高一上期末复习检测试题含解析_第4页
吉林省通榆一中2026届数学高一上期末复习检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省通榆一中2026届数学高一上期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的图像大致为()A. B.C. D.2.已知函数,则的概率为A. B.C. D.3.已知,函数在上单调递减,则的取值范围是()A. B.C. D.4.下列四个函数中,在上为增函数的是()A. B.C. D.5.对于函数的图象,关于直线对称;关于点对称;可看作是把的图象向左平移个单位而得到;可看作是把的图象上所有点的纵坐标不变,横坐标缩短到原来的倍而得到以上叙述正确的个数是A.1个 B.2个C.3个 D.4个6.已知集合,,则A∩B中元素的个数为()A.2 B.3C.4 D.57.设四边形为平行四边形,,若点满足,,则A. B.C. D.8.如果且,则等于A.2016 B.2017C.1009 D.20189.若都是锐角,且,,则A. B.C.或 D.或10.函数f(x)=tan的单调递增区间是()A.(k∈Z) B.(k∈Z)C.(k∈Z) D.(k∈Z)二、填空题:本大题共6小题,每小题5分,共30分。11.函数是定义在R上的奇函数,当时,2,则在R上的解析式为________.12.已知函数,若函数恰有三个不同的零点,则实数k的取值范围是_____________13.已知函数,现有如下几个命题:①该函数为偶函数;

②是该函数的一个单调递增区间;③该函数的最小正周期为;④该函数的图像关于点对称;⑤该函数值域为.其中正确命题的编号为______14.圆关于直线的对称圆的标准方程为___________.15.水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征.如图是一个半径为的水车,以水车的中心为原点,过水车的中心且平行于水平面的直线为轴,建立如图平面直角坐标系,一个水斗从点出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时秒.经过秒后,水斗旋转到点,设点的坐标为,其纵坐标满足,当秒时,___________.16.已知,,则的值为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知定义在R上的函数满足:①对任意实数x,y,都有;②对任意(1)求;(2)判断并证明函数的奇偶性;(3)若,直接写出的所有零点(不需要证明)18.某种商品在天内每件的销售价格(元)与时间(天)的函数关系为,该商品在天内日销售量(件)与时间(天)之间满足一次函数关系,具体数据如下表:第天(Ⅰ)根据表中提供的数据,求出日销售量关于时间的函数表达式;(Ⅱ)求该商品在这天中的第几天的日销售金额最大,最大值是多少?19.已知函数,.(1)求的值.(2)设,,,求的值.20.阅读与探究人教A版《普通高中课程标准实验教科书数学4(必修)》在第一章小结中写道:将角放在直角坐标系中讨论不但使角的表示有了统一的方法,而且使我们能够借助直角坐标系中的单位圆,建立角的变化与单位圆上点的变化之间的对应关系,从而用单位圆上点的纵坐标、横坐标来表示圆心角的正弦函数、余弦函数.因此,正弦函数、余弦函数的基本性质与圆的几何性质(主要是对称性)之间存在着非常紧密的联系.例如,和单位圆相关的“勾股定理”与同角三角函数的基本关系有内在的一致性;单位圆周长为与正弦函数、余弦函数的周期为是一致的;圆的各种对称性与三角函数的奇偶性、诱导公式等也是一致的等等.因此,三角函数的研究过程能够很好地体现数形结合思想.依据上述材料,利用正切线可以讨论研究得出正切函数的性质.比如:由图1.2-7可知,角的终边落在四个象限时均存在正切线;角的终边落在轴上时,其正切线缩为一个点,值为;角的终边落在轴上时,其正切线不存在;所以正切函数的定义域是.(1)请利用单位圆中的正切线研究得出正切函数的单调性和奇偶性;(2)根据阅读材料中途1.2-7,若角为锐角,求证:.21.已知,且是第________象限角.从①一,②二,③三,④四,这四个选项中选择一个你认为恰当的选项填在上面的横线上,并根据你的选择,解答以下问题:(1)求的值;(2)化简求值:.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先判断函数为偶函数排除;再根据当时,,排除得到答案.【详解】,偶函数,排除;当时,,排除故选【点睛】本题考查了函数图像的识别,通过函数的奇偶性和特殊函数点可以排除选项快速得到答案.2、B【解析】由对数的运算法则可得:,当时,脱去符号可得:,解得:,此时;当时,脱去符号可得:,解得:,此时;据此可得:概率空间中的7个数中,大于1的5个数满足题意,由古典概型公式可得,满足题意的概率值:.本题选择B选项.3、A【解析】由题意可得,,,,.故A正确考点:三角函数单调性4、C【解析】A.利用一次函数的性质判断;B.利用二次函数的性质判断;C.利用反比例函数的性质判断;D.由,利用一次函数的性质判断;【详解】A.由一次函数的性质知:在上为减函数,故错误;B.由二次函数的性质知:在递减,在上递增,故错误;C.由反比例函数的性质知:在上递增,在递增,则在上为增函数,故正确;D.由知:函数在上为减函数,故错误;故选:C【点睛】本题主要考查一次函数,二次函数和反比例函数的单调性,属于基础题.5、B【解析】由判断;由判断;由的图象向左平移个单位,得到的图象判断;由的图象上所有点的纵坐标不变,横坐标缩短到原来的倍,得到函数的图象判断.【详解】对于函数的图象,令,求得,不是最值,故不正确;令,求得,可得的图象关于点对称,故正确;把的图象向左平移个单位,得到的图象,故不正确;把的图象上所有点的纵坐标不变,横坐标缩短到原来的倍,得到函数的图象,故正确,故选B【点睛】本题通过对多个命题真假的判断,综合考查三角函数的对称性以及三角函数的图象的变换规律,属于中档题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.6、B【解析】采用列举法列举出中元素的即可.【详解】由题意,,故中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.7、D【解析】令,则,,故选D8、D【解析】∵f(x)满足对任意的实数a,b都有f(a+b)=f(a)•f(b),∴令b=1得,f(a+1)=f(a)•f(1),∴,所以,共1009项,所以.故选D.9、A【解析】先计算出,再利用余弦的和与差公式,即可.【详解】因为都是锐角,且,所以又,所以,所以,,故选A.【点睛】本道题考查了同名三角函数关系和余弦的和与差公式,难度较大10、B【解析】运用整体代入法,结合正切函数的单调区间可得选项.【详解】由kπ-<2x-<kπ+(k∈Z),得<x<(k∈Z),所以函数f(x)=tan的单调递增区间为(k∈Z).故选:B.【点睛】本题考查正切函数的单调性,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由是定义域在上的奇函数,根据奇函数的性质,可推得的解析式.【详解】当时,2,即,设,则,,又为奇函数,,所以在R上的解析式为.故答案为:.12、【解析】根据函数解析式画出函数图象,则函数的零点个数,转化为函数与有三个交点,结合函数图象判断即可;【详解】解:因为,函数图象如下所示:依题意函数恰有三个不同的零点,即函数与有三个交点,结合函数图象可得,即;故答案为:13、②③【解析】由于为非奇非偶函数,①错误.,此时,其在上为增函数,②正确.由于,所以函数最小正周期为,③正确.由于,故④正确.当时,,故⑤错误.综上所述,正确的编号为②③.14、【解析】两圆关于直线对称,则两圆的圆心关于直线对称,且两圆半径相同,由此求解即可【详解】由题,圆的标准方程为,即圆心,半径为,设对称圆的圆心为,则,解得,所以对称圆的方程为,故答案为:【点睛】本题考查圆关于直线对称的圆,属于基础题15、【解析】求出关于的函数解析式,将代入函数解析式,求出的值,可得出点的坐标,进而可求得的值.【详解】由题意可知,,函数的最小正周期为,则,所以,,点对应,,则,可得,,,故,当时,,因为,故点不与点重合,此时点,则.故答案为:.16、-.【解析】将和分别平方计算可得.【详解】∵,∴,∴,∴,又∵,∴,∴,故答案为:-.【点晴】此题考同脚三角函数基本关系式应用,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)为偶函数,证明见解析(3)【解析】(1)令,化简可求出,(2)令,则,化简后结合函数奇偶性的定义判断即可,(3)利用赋值求解即可【小问1详解】令,则,,得或,因对任意,所以【小问2详解】为偶函数证明:令,则,得,所以为偶函数【小问3详解】令,则,因为,所以,当时,,当时,,当时,,当时,,……,所以即当时,,所以函数的零点为18、(Ⅰ)(,,)(Ⅱ)第天的日销售金额最大,为元【解析】(Ⅰ)设,代入表中数据可求出,得解析式;(Ⅱ)日销售金额为,根据(1)及已知可得其表达式,这是一个分段函数,分段求出最大值后比较即得最大值【详解】(Ⅰ)设日销售量关于时间的函数表达式为,依题意得:,解之得:,所以日销售量关于时间的函数表达式为(,,).(Ⅱ)设商品的日销售金额为(元),依题意:,所以,即:.当,时,,当时,;当,时,,当时,;所以该商品在这天中的第天的日销售金额最大,为元.【点睛】本题考查函数模型应用,由所给函数模型求出解析式是解题关键.本题属于中档题19、(1);(2).【解析】(1)代入可求得其值;(2)由已知求得,,再由同角三角函数的关系可求得,,运用余弦的和角公式可求得答案.【详解】解:(1).(2),∴,∵,∴,∵,∴,,∵.20、(1)见解析(2)见解析【解析】(1)在单位圆中画出角的正切线,观察随增大正切线的值得变化情况,再观察时,正切线的值随增大时的变化情况,发现正切函数在区间上单调递增.(2)当是锐角时,有,由此得到.解析:(1)当时,增大时正切线的值越来越大;当时,正切线与区间上的情况完全一样;随着角的终边不停旋转,正切线不停重复出现,故可得出正切函数在区间上单调递增;由题意知正切函数的定义域关于原点对称,在坐标系中画出角和,它们的终边关于轴对称,在单位圆中作出它们的正切线,可以发现它们的正切线长度相等,方向相反,即,得出正切函数为奇函数.(2)如图,当为锐角时,在单位圆中作出它的正弦线,正切线,又因为,所以,又,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论