山东省锦泽技工学校2026届高二上数学期末质量检测试题含解析_第1页
山东省锦泽技工学校2026届高二上数学期末质量检测试题含解析_第2页
山东省锦泽技工学校2026届高二上数学期末质量检测试题含解析_第3页
山东省锦泽技工学校2026届高二上数学期末质量检测试题含解析_第4页
山东省锦泽技工学校2026届高二上数学期末质量检测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省锦泽技工学校2026届高二上数学期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线与圆的位置关系是()A.相交 B.相切C.相离 D.都有可能2.数列满足,,,则数列的前8项和为()A.25 B.26C.27 D.283.在数列中,,则的值为()A. B.C. D.以上都不对4.设函数,当自变量t由2变到2.5时,函数的平均变化率是()A.5.25 B.10.5C.5.5 D.115.计算复数:()A. B.C. D.6.已知的三个顶点是,,,则边上的高所在的直线方程为()A. B.C. D.7.若数列的前n项和(n∈N*),则=()A.20 B.30C.40 D.508.已知,且,则实数的值为()A. B.3C.4 D.69.等比数列的各项均为正数,且,则=()A.8 B.16C.32 D.6410.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的类似问题:把150个完全相同的面包分给5个人,使每个人所得面包数成等差数列,且使较大的三份面包数之和的是较小的两份之和,则最大的那份面包数为()A.30 B.40C.50 D.6011.若曲线f(x)=x2的一条切线l与直线平行,则l的方程为()A.4x-y-4=0 B.x+4y-5=0C.x-4y+3=0 D.4x+y+4=012.下列语句中是命题的是A.周期函数的和是周期函数吗? B.C. D.梯形是不是平面图形呢?二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若,则________.14.曲线围成的图形的面积为___________.15.已知,为椭圆C的焦点,点P在椭圆C上,,则的面积为___________.16.已知空间向量,且,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)求下列不等式的解集:(1);(2).18.(12分)已知,p:,q:(1)若p是q的充分不必要条件,求实数m的取值范围;(2)若,“p或q”为真命题,“p且q”为假命题,求实数x的取值范围19.(12分)已知数列的前n项和,满足,.(1)求证:数列是等差数列;(2)令,求数列的前n项和.20.(12分)已知函数.(1)求曲线在处的切线方程;(2)求曲线过点的切线方程.21.(12分)求满足下列条件的双曲线的标准方程(1)焦点在x轴上,实轴长为4,实半轴长是虚半轴长的2倍;(2)焦点在y轴上,渐近线方程为,焦距长为22.(10分)已知圆C的圆心为,且圆C经过点(1)求圆C的一般方程;(2)若圆与圆C恰有两条公切线,求实数m的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求出圆心到直线的距离,然后与圆的半径进行大小比较即可求解.【详解】解:圆的圆心,,因为圆心到直线的距离,所以直线与圆的位置关系是相交,故选:A.2、C【解析】根据通项公式及求出,从而求出前8项和.【详解】当时,,当时,,当时,,当时,,当时,,当时,,则数列的前8项和为.故选:C3、C【解析】由数列的递推公式可先求数列的前几项,从而发现数列的周期性的特点,进而可求.【详解】解:,数列是以3为周期的数列故选:【点睛】本题主要考查了利用数列的递推公式求解数列的项,解题的关键是由递推关系发现数列的周期性的特点,属于基础题.4、B【解析】利用平均变化率的公式即得.【详解】∵,∴.故选:B.5、D【解析】直接利用复数代数形式的乘除运算化简可得结论.【详解】故选:D.6、B【解析】求出边上的高所在的直线的斜率,再利用点斜式方程可得答案.【详解】因为,所以边上的高所在的直线的斜率为,所以边上的高所在的直线方程为,即.故选:B.7、B【解析】由前项和公式直接作差可得.【详解】数列的前n项和(n∈N*),所以.故选:B.8、B【解析】根据给定条件利用空间向量垂直的坐标表示计算作答.详解】因,且,则有,解得,所以实数的值为3.故选:B9、B【解析】由等比数列的下标和性质即可求得答案.【详解】由题意,,所以.故选:B.10、C【解析】根据题意得到递增等差数列中,,,从而化成基本量,进行计算,再计算出,得到答案.【详解】根据题意,设递增等差数列,首项为,公差,则所以解得所以最大项.故选:C11、D【解析】设切点为,则切线的斜率为,然后根据条件可得的值,然后可得答案.【详解】设切点为,因为,所以切线的斜率为因为曲线f(x)=x2的一条切线l与直线平行,所以,即所以l的方程为,即故选:D12、B【解析】命题是能判断真假的语句,疑问句不是命题,易知为命题,故选B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出导函数,确定导函数奇函数,然后可求值【详解】由已知,它是奇函数,∴故答案为:【点睛】本题考查导数的运算,考查函数的奇偶性,确定函数的奇偶性是解题关键14、##【解析】曲线围成图形关于轴,轴对称,故只需要求出第一象限的面积即可.【详解】将或代入方程,方程不发生改变,故曲线关于轴,轴对称,因此只需求出第一象限的面积即可.当,时,曲线可化为:,表示的图形为一个半圆,围成的面积为,故曲线围成的图形的面积为.故答案:.15、##【解析】设,然后根据椭圆的定义和余弦定理列方程组可求出,再由三角形的面积公式可求得结果【详解】由,得,则,设,则,在中,,由余弦定理得,,所以,所以,所以,所以,故答案为:16、【解析】根据空间向量共线的坐标表示可得出关于的等式,求出的值即可.【详解】由已知可得,解得.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据一元二次不等式的解法求得不等式的解集.(2)根据分式不等式的解法求得不等式的解集.【小问1详解】不等式等价于,解得.∴不等式的解集为.【小问2详解】不等式等价于,解得或.∴不等式的解集为.18、(1)(2)或【解析】(1)根据命题对应的集合是命题对应的集合的真子集列式解得结果即可得解;(2)“p或q”为真命题,“p且q”为假命题,等价于与一真一假,分两种情况列式可得结果.【详解】(1)因为p:对应的集合为,q:对应的集合为,且p是q的充分不必要条件,所以,所以,解得.(2),当时,,因为“p或q”为真命题,“p且q”为假命题,所以与一真一假,当真时,假,所以,此不等式组无解;当真时,假,所以,解得或.综上所述:实数x的取值范围是或.【点睛】结论点睛:本题考查由充分不必要条件求参数取值范围,一般可根据如下规则转化:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)是的充分不必要条件,则对应集合是对应集合的真子集;(3)是的充分必要条件,则对应集合与对应集合相等;(4)是的既不充分又不必要条件,对的集合与对应集合互不包含19、(1)证明见解析(2)【解析】(1)先将变为,然后等式两边同除即可得答案;(2)求出,再用错位相减求和【小问1详解】证明:∵∴由已知易得,∴∴数列是首项,公差为的等差数列;【小问2详解】由(1)可知,∴∴①②①-②有∴20、(1);(2).【解析】(1)首先求导函数,计算,接着根据导数的几何意义确定切线的斜率,最后根据点斜式写出直线方程即可;(2)因为点不在曲线上,所以设切点为,根据导数的几何意义写出切线的方程,代入点求解,最后写出切线方程即可.【详解】(1).,.所以曲线在处的切线方程为,即(2)设切点为,则曲线在点处的切线方程为,代入点得,,.所以曲线过点的切线方程为,即.21、(1)(2)【解析】(1)(2)直接由条件解出即可得到双曲线方程.【小问1详解】由题意有,解得:,则双曲线的标准方程为:【小问2详解】由题意有,解得:,则双曲线的标

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论