2025-2026学年人教版九年级数学上册第二十五章 概率初步 单元测试卷(含答案)_第1页
2025-2026学年人教版九年级数学上册第二十五章 概率初步 单元测试卷(含答案)_第2页
2025-2026学年人教版九年级数学上册第二十五章 概率初步 单元测试卷(含答案)_第3页
2025-2026学年人教版九年级数学上册第二十五章 概率初步 单元测试卷(含答案)_第4页
2025-2026学年人教版九年级数学上册第二十五章 概率初步 单元测试卷(含答案)_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二十五章概率初步单元测试卷时间:120分钟满分:150分一、选择题(本大题共10小题,每小题4分,满分40分)1.下列事件中是随机事件的有 ()①早晨的太阳一定从东方升起;②打开数学课本时刚好翻到第60页;③从一定高度落下的图钉,落地后钉尖朝上;④今年14岁的小云一定是初中学生.A.1个 B.2个 C.3个 D.4个2.下列说法正确的是 ()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是1C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖3.四张质地、大小相同的卡片上,分别画上如下图所示的四个图形,在看不到图形的情况下从中任意抽出一张,则抽出的卡片是轴对称图形的概率是 ()A.12 B.14 C.34.黄波在做一道数学选择题时,经过审题,他知道在A、B、C、D四个备选答案中,只有一个是正确的,但他只能确定选项D是错误的,于是他在其他三个选项中随机选择了B,那么黄波答对这道选择题的概率是 ()A.14 B.13 C.15.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是 ()A.23 B.166.某奥体中心的构造如图所示,其东、西面各有一个入口A、B,南面为出口C,北面分别有两个出口D、E.聪聪若任选一个入口进入,再任选一个出口离开,那么他从入口A进入并从北面出口离开的概率为 ()A.16 B.15 7.为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼,如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的总数可估计为 ()A.3000条 B.2200条 C.1200条 D.600条8.下表是某种抽奖活动中,封闭的抽奖箱中各种球的颜色、数量,以及它们所代表的奖项:颜色红色黄色蓝色白色数量(个)56910奖项一等奖二等奖三等奖四等奖为了保证抽奖的公平性,这些小球除了颜色外,其他都相同,而且每一个球被抽中的机会均相等,则该抽奖活动抽中一等奖的概率为 ()A.16B.15C.310D.22C.9.小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标注连续偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是56,则n的取值为 A.36 B.30 C.24 D.1810.某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是 ()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一个球是黄球D.掷一个质地均匀的正六面体骰子,向上一面的点数是4二、填空题(本大题共4小题,每小题5分,满分20分)11.小芳同学有两根长度为4cm,10cm的木棒,她想钉一个三角形相框,桌上有五根木棒供她选择(如图所示),从中任选一根,能钉成三角形相框的概率是.12.某电视台综艺节目接到热线电话500个,现从中抽取“幸运观众”10名,小明打通了一次热线电话,他成为“幸运观众”的概率是.13.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.14.小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球共3000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是.三、(本大题共2小题,每小题8分,满分16分)15.在一个不透明的袋子中,装有9个大小和形状一样的小球,其中3个红球,3个白球,3个黑球,它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n个球,在这n个球中,红球、白球、黑球至少各有一个.(1)当n为何值时,这个事件必然发生?(2)当n为何值时,这个事件可能发生?16.一个不透明的口袋中有三个小球,上面分别标有字母A、B、C,除所标字母不同外,其他完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.四、(本大题共2小题,每小题8分,满分16分)17.甲、乙、丙、丁4名同学进行一次羽毛球单打比赛,要从中选出2名同学打第一场比赛,求下列事件的概率:(1)已确定甲打第一场,再从其余3名同学中随机选取1名,恰好选中乙同学;(2)随机选取2名同学,其中有乙同学.18.儿童节期间,某公园游戏场举行一场活动.活动规则是:在一个装有8个红球和若干个白球(除颜色外,其他都相同)的袋中,随机摸一个球,摸到红球就得到一个海宝玩具.已知参加这种活动的儿童有40000人,公园游戏场发放海宝玩具8000个.(1)求参加此次活动得到海宝玩具的频率.(2)请你估计袋中白球的数量接近多少?五、(本大题共2小题,每小题10分,满分20分)19.如图,一转盘被等分成三个扇形,上面分别标有-1,1,2中的一个数,指针位置固定,转动转盘后任其自由停止,这时,某个扇形会恰好停在指针所指的位置,并相应得到这个扇形上的数(若指针恰好指在等分线上,当作指向右边的扇形).(1)若小静转动转盘一次,求得到负数的概率;(2)小宇和小静分别转动转盘一次,若两人得到的数相同,则称两人“不谋而合”.用列表(或画树状图)法求两人“不谋而合”的概率.20.有3张形状材质相同的不透明卡片,正面分别写有1、2、-3三个数字.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字作为一次函数y=kx+b中k的值;第二次从余下的两张卡片中再随机抽取一张,上面标有的数字作为b的值.(1)k的值为正数的概率是;(2)用画树状图或列表法求所得到的一次函数y=kx+b的图象经过第一、三、四象限的概率.六、(本题满分12分)21.为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.七、(本题满分12分)22.王强与李刚两位同学在学习“概率”时,做抛骰子(均匀正方体形状)实验,他们共抛了54次,出现向上点数的次数如下表:向上点数123456出现次数69581610(1)请计算出现向上点数为3的频率及出现向上点数为5的频率;(2)王强说:“根据实验,一次试验中出现向上点数为5的概率最大.”李刚说:“如果抛540次,那么出现向上点数为6的次数正好是100次.”请判断王强和李刚说法的对错.八、(本题满分14分)23.若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.(1)请画出树状图并写出所有可能得到的三位数;(2)甲、乙两人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.1.C2.A3.A4.B5.D6.C7.C8.A9.C10.D11.2512.15013.15.解:(1)当n=7或8或9时,这个事件必然发生;(2)当n=3或4或5或6时,这个事件可能发生.16.解:列表得:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由列表可知可能出现的结果共9种,其中两次摸出的小球所标字母相同的情况数有3种,所以该同学两次摸出的小球所标字母相同的概率为317.解:(1)已确定甲打第一场,再从其余3名同学中随机选取1名,恰好选中乙同学的概率是13;(2)从甲、乙、丙、丁4名同学中随机选取2名同学,所有可能出现的结果有:(甲、乙)、(甲、丙)、(甲、丁)、(乙、丙)、(乙、丁)、(丙、丁),共有6种,它们出现的可能性相同,所有的结果中,满足“随机选取2名同学,其中有乙同学”(记为事件A)的结果有3种,所以18.解:(1)参加此次活动得到海宝玩具的频率mn=800040000=19.解:(1)∵转盘被等分成三个扇形,上面分别标有-1,1,2,∴小静转动转盘一次,得到负数的概率为:1(2)列表得:小静小宇—112-1(-1,-1)(-1,1)(-1,2)1(1,-1)(1,1)(1,2)2(2,-1)(2,1)(2,2)∴一共有9种等可能的结果,两人得到的数相同的有3种情况,∴两人“不谋而合”的概率为320.解:(1)2(2)画树状图得:∵共有6种可能的结果,且它们出现的可能性相等,其中函数图象经过第一、三、四象限,即k>0,b<0的有2种情况,∴21.解:(1)n=5÷10%=50;(2)样本中喜爱看电视的人数为:50-15-20-5=10(人),估计该校喜爱看电视的学生人数为1200×10(3)画树状图为:则共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率为622.解:(1)向上点数为3的频率=554;向上点数为5的频率=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论