浙江省绍兴市诸暨中学2026届高一数学第一学期期末质量跟踪监视模拟试题含解析_第1页
浙江省绍兴市诸暨中学2026届高一数学第一学期期末质量跟踪监视模拟试题含解析_第2页
浙江省绍兴市诸暨中学2026届高一数学第一学期期末质量跟踪监视模拟试题含解析_第3页
浙江省绍兴市诸暨中学2026届高一数学第一学期期末质量跟踪监视模拟试题含解析_第4页
浙江省绍兴市诸暨中学2026届高一数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省绍兴市诸暨中学2026届高一数学第一学期期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.满足的角的集合为()A. B.C. D.2.已知为正实数,且,则的最小值为()A.4 B.7C.9 D.113.若函数,则的单调递增区间为()A. B.C. D.4.利用二分法求方程的近似解,可以取得一个区间A. B.C. D.5.若函数满足且的最小值为,则函数的单调递增区间为A. B.C. D.6.在空间直角坐标系中,点在轴上,且点到点与点的距离相等,则点坐标为()A. B.C. D.7.若,则是()A.第一象限或第三象限角 B.第二象限或第四象限角C.第三象限或第四象限角 D.第二象限或第三象限角8.已知,则os等于()A. B.C. D.9.设,则()A. B.C. D.10.体育老师记录了班上10名同学1分钟内的跳绳次数,得到如下数据:88,94,96,98,98,99,100,101,101,116.这组数据的60%分位数是()A.98 B.99C.99.5 D.100二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数若关于的方程有5个不同的实数根,则的取值范围为___________.12.大圆周长为的球的表面积为____________13.已知定义在上的函数满足:①;②在区间上单调递减;③的图象关于直线对称,则的解析式可以是________14.已知是偶函数,则实数a的值为___________.15.已知幂函数f(x)是奇函数且在上是减函数,请写出f(x)的一个表达式________16.已知函数部分图象如图所示,则函数的解析式为:____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.“百姓开门七件事,事事都会生垃圾,垃圾分类益处多,环境保护靠你我”,为了推行垃圾分类,某公司将原处理垃圾可获利万元的一条处理垃圾流水线,通过技术改造后,开发引进生态项目.经过测算,发现该流水线改造后获利万元与技术投入万元之间满足的关系式:.该公司希望流水线改造后获利不少于万元,其中为常数,且.(1)试求该流水线技术投入的取值范围;(2)求流水线改造后获利的最大值,并求出此时的技术投入的值.18.已知函数.(1)求的单调递增区间;(2)设,已知,求的值.19.已知函数,当时,取得最小值(1)求a的值;(2)若函数有4个零点,求t的取值范围20.已知函数,1求的值;2若,,求21.已知角的顶点与原点重合,始边与轴的非负半轴重合,它的终边在直线上.(1)求的值;(2)求值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用正弦函数的图像性质即可求解.【详解】.故选:D.2、C【解析】由,展开后利用基本不等式求最值【详解】且,∴,当且仅当,即时,等号成立∴的最小值为9故选:C3、A【解析】令,则,根据解析式,先求出函数定义域,结合二次函数以及对数函数的性质,即可得出结果.【详解】令,则,由真数得,∵抛物线的开口向下,对称轴,∴在区间上单调递增,在区间上单调递减,又∵在定义域上单调递减,由复合函数的单调性可得:的单调递增区间为.故选:A.4、D【解析】根据零点存在定理判断【详解】设,则函数单调递增由于,,∴在上有零点故选:D.【点睛】本题考查方程解与函数零点问题.掌握零点存在定理是解题关键5、D【解析】分析:首先根据诱导公式和辅助角公式化简函数解析式,之后应用题的条件求得函数的最小正周期,求得的值,从而求得函数解析式,之后利用整体思维,借助于正弦型函数的解题思路,求得函数的单调增区间.详解:,根据题中条件满足且的最小值为,所以有,所以,从而有,令,整理得,从而求得函数的单调递增区间为,故选D.点睛:该题考查的是有关三角函数的综合问题,涉及到的知识点有诱导公式、辅助角公式、函数的周期以及正弦型函数的单调区间的求法,在结题的过程中,需要对各个知识点要熟记,解题方法要明确.6、B【解析】先由题意设点的坐标为,根据空间中的两点间距离公式,列出等式,求出,即可得出结果.【详解】因为点在轴上,所以可设点的坐标为,依题意,得,解得,则点的坐标为故选:B.7、D【解析】由已知可得即可判断.【详解】,即,则且,是第二象限或第三象限角.故选:D.8、A【解析】利用诱导公式即可得到结果.【详解】∵∴os故选A【点睛】本题考查诱导公式的应用,属于基础题.9、D【解析】由,则,再由指数、对数函数的单调性得出大小,得出答案.【详解】由,则,,所以故选:D10、C【解析】根据分位数的定义即可求得答案.【详解】这组数据的60%分位数是.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据函数的解析式作出函数的大致图像,再将整理变形,然后将方程的根的问题转化为函数图象的交点问题解决.【详解】由题意得,即或,的图象如图所示,关于的方程有5个不同的实数根,则或,解得,故答案为:12、【解析】依题意可知,故求得表面积为.13、(答案不唯一)【解析】取,结合二次函数的基本性质逐项验证可得结论.【详解】取,则,满足①,在区间上单调递减,满足②,的图象关于直线对称,满足③.故答案为:(答案不唯一).14、【解析】根据偶函数定义求解【详解】由题意恒成立,即,恒成立,所以故答案为:15、【解析】由题意可知幂函数中为负数且为奇数,从而可求出解析式【详解】因为幂函数是奇函数且在上是减函数,所以为负数且为奇数,所以f(x)的一个表达式可以是(答案不唯一),故答案为:(答案不唯一)16、【解析】先根据图象得到振幅和周期,即求得,再根据图象过,求得,得到解析式.【详解】由图象可知,,故,即.又由图象过,故,解得,而,故,所以.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)当时,,此时;当时,,此时.【解析】(1)由题意得出,解此不等式即可得出的取值范围;(2)比较与的大小关系,分析二次函数在区间上的单调性,由此可得出函数的最大值及其对应的的值.【详解】(1),,由题意可得,即,解得,因此,该流水线技术投入的取值范围是;(2)二次函数的图象开口向下,且对称轴为直线.①当时,即当时,函数在区间上单调递增,在区间上单调递减,所以,;②当时,即当时,函数在区间上单调递减,所以,.综上所述,当时,;当时,【点睛】本题考查二次函数模型的应用,同时也考查了二次函数最值的求解,考查分类讨论思想的应用,属于中等题.18、(1);(2).【解析】(1)根据降幂公式、二倍角的正弦公式、辅助角公式,结合正弦型函数的单调性进行求解即可;(2)利用代入法,根据同角的三角函数关系式,结合两角差的正弦公式进行求解即可.【小问1详解】,当时,函数单调递增,即,所以函数的单调递增区间为;【小问2详解】由,因为,所以,而,所以,于是有,19、(1)4(2)【解析】(1)分类讨论和两种情况,由其单调性得出a的值;(2)令,结合一元二次方程根的分布得出t的取值范围【小问1详解】解:当时,,则,故没有最小值当时,由,得,则在上单调递减,在上单调递增,故,即【小问2详解】的图象如图所示令,则函数在上有2个零点,得解得,故t的取值范围为20、(Ⅰ)=1;(Ⅱ)=【解析】(1)将代入可得:,在利用诱导公式和特殊角的三角函数值即可;(2)因为,根据两角和的余弦公式需求出和,,,则,根据二倍角公式求出代入即可试题解析:(1)因为,所以;(2)因为,,则所以,考点:1.诱导公式;2.二倍角公式;3.两角和余弦21、(1)或;(2)或;【解析】(1)在直线上任取一点,由已知角的终边过点,利用诱导公式与三角函数定义即可求解,要注意分类讨论m的正负.(2)先利用商的关系化简原式为,结合第一问利用三角函数定义分别

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论