2026届天津市滨海新区塘沽滨海中学数学高一上期末监测模拟试题含解析_第1页
2026届天津市滨海新区塘沽滨海中学数学高一上期末监测模拟试题含解析_第2页
2026届天津市滨海新区塘沽滨海中学数学高一上期末监测模拟试题含解析_第3页
2026届天津市滨海新区塘沽滨海中学数学高一上期末监测模拟试题含解析_第4页
2026届天津市滨海新区塘沽滨海中学数学高一上期末监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届天津市滨海新区塘沽滨海中学数学高一上期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数是定义在R上的减函数,实数a,b,c满足,且,若是函数的一个零点,则下列结论中一定不正确的是()A. B.C. D.2.若曲线上所有点都在轴上方,则的取值范围是A. B.C. D.3.如果,那么下列不等式中,一定成立的是()A. B.C. D.4.已知函数以下关于的结论正确的是()A.若,则B.的值域为C.在上单调递增D.的解集为5.已知直线与直线平行,则的值为A.1 B.-1C.0 D.-1或16.如图是函数在一个周期内的图象,则其解析式是()A. B.C. D.7.设全集,集合,则()A.{3,5} B.{2,4}C.{1,2,3,4,5} D.{2,3,4,5,6}8.已知角终边上一点,则A. B.C. D.9.如果函数在上的图象是连续不断的一条曲线,那么“”是“函数在内有零点”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件10.若直线与直线互相垂直,则等于(

)A.1 B.-1C.±1 D.-2二、填空题:本大题共6小题,每小题5分,共30分。11.设函数,若其定义域内不存在实数,使得,则的取值范围是______12.关于函数f(x)=有如下四个命题:①f(x)的图象关于y轴对称②f(x)的图象关于原点对称③f(x)的图象关于直线x=对称④f(x)的最小值为2其中所有真命题的序号是__________13.函数的最大值为__________14.已知函数,,对任意,总存在使得成立,则实数a的取值范围是_________.15.设是定义在区间上的严格增函数.若,则a的取值范围是______16.已知函数满足,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,集合或,全集(1)若,求;(2)若,求实数a的取值范围18.如图,在中,已知为线段上的一点,.(1)若,求的值;(2)若,,,且与的夹角为时,求的值19.已知函数且(1)判断函数的奇偶性;(2)判断函数在上的单调性,并给出证明;(3)当时,函数值域是,求实数与自然数的值20.设函数.(1)若,且均为正实数,求的最小值,并确定此时实数的值;(2)若满足在上恒成立,求实数的取值范围.21.2020年12月17日凌晨,经过23天月球采样旅行,嫦娥五号返回器携带月球样品成功着陆预定区域,我国首次对外天体无人采样返回任务取得圆满成功,成为时隔40多年来首个完成落月采样并返回地球的国家,标志着我国探月工程“绕,落,回”圆满收官.近年来,得益于我国先进的运载火箭技术,我国在航天领域取得了巨大成就.据了解,在不考虑空气阻力和地球引力的理想状态下,可以用公式计算火箭的最大速度,其中是喷流相对速度,是火箭(除推进剂外)的质量,是推进剂与火箭质量的总和,从称为“总质比”,已知A型火箭的喷流相对速度为.(1)当总质比为200时,利用给出的参考数据求A型火箭的最大速度;(2)经过材料更新和技术改进后,A型火箭的喷流相对速度提高到了原来的倍,总质比变为原来的,若要使火箭的最大速度至少增加,求在材料更新和技术改进前总质比的最小整数值.参考数据:,.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据函数的单调性可得,再分和两种情况讨论,结合零点的存在性定理即可得出结论.【详解】解:∵是定义在R上的减函数,,∴,∵,∴或,,,当时,,;当,,时,;∴是不可能的.故选:B2、C【解析】曲线化标准形式为:圆心,半径,,即,∴故选C3、D【解析】取,利用不等式性质可判断ABC选项;利用不等式的性质可判断D选项.【详解】若,则,所以,,,ABC均错;因为,则,因为,则,即.故选:D.4、B【解析】A选项逐段代入求自变量的值可判断;B选项分别求各段函数的值域再求并集可判断;C选项取特值比较大小可判断不单调递增;D选项分别求各段范围下的不等式的解集求并集即可判断.【详解】解:A选项:当时,若,则;当时,若,则,故A错误;B选项:当时,;当时,,故的值城为,B正确;C选项:当时,,当时,,在上不单调递增,故C错误;D选项:当时,若,则;当时,若,则,故的解集为,故D错误;故选:B.5、A【解析】由于直线l1:ax+y-1=0与直线l2:x+ay+=0平行所以,即-1或1,经检验成立.故选A.6、B【解析】通过函数的图象可得到:A=3,,,则,然后再利用点在图象上求解.,【详解】由函数的图象可知:A=3,,,所以,又点在图象上,所以,即,所以,即,因为,所以所以故选:B【点睛】本题主要考查利用三角函数的图象求解析式,还考查了运算求解的能力,属于中档题.7、D【解析】先求补集,再求并集.详解】,则.故选:D8、C【解析】由题意利用任意角的三角函数的定义,求得的值【详解】∵角终边上一点,∴,,,则,故选C【点睛】本题主要考查任意角的三角函数的定义,属于基础题9、A【解析】由零点存在性定理得出“若,则函数在内有零点”举反例即可得出正确答案.【详解】由零点存在性定理可知,若,则函数在内有零点而若函数在内有零点,则不一定成立,比如在区间内有零点,但所以“”是“函数在内有零点”的充分而不必要条件故选:A【点睛】本题主要考查了充分不必要条件的判断,属于中档题.10、C【解析】分类讨论:两条直线的斜率存在与不存在两种情况,再利用相互垂直的直线斜率之间的关系即可【详解】解:①当时,利用直线方程分别化为:,,此时两条直线相互垂直②如果,两条直线的方程分别为与,不垂直,故;③,当时,此两条直线的斜率分别为,两条直线相互垂直,,化为,综上可知:故选【点睛】本题考查了相互垂直的直线斜率之间的关系、分类讨论思想方法,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】按的取值范围分类讨论.【详解】当时,定义域,,满足要求;当时,定义域,取,,时,,不满足要求;当时,定义域,,,满足要求;当时,定义域,取,,时,,不满足要求;综上:故答案为:【点睛】关键点睛:由参数变化引起的分类讨论,可根据题设按参数在不同区间,对应函数的变化,找到参数的取值范围.12、②③【解析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取可判断命题④的正误.综合可得出结论.【详解】对于命题①,,,则,所以,函数的图象不关于轴对称,命题①错误;对于命题②,函数的定义域为,定义域关于原点对称,,所以,函数的图象关于原点对称,命题②正确;对于命题③,,,则,所以,函数的图象关于直线对称,命题③正确;对于命题④,当时,,则,命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.第ⅠⅠ卷13、【解析】利用二倍角余弦公式,把问题转化为关于的二次函数的最值问题.【详解】,又,∴函数的最大值为.故答案为:.14、【解析】根若对于任意的∈,总存在,使得g(x0)=f(x1)成立,得到函数f(x)在上值域是g(x)在上值域的子集,然后利用求函数值域之间的关系列出不等式,解此不等式组即可求得实数a的取值范围即可【详解】∵,∴f(0)≤f(x)≤f(1),即0≤f(x)≤4,即函数f(x)的值域为B=[0,4],若对于任意的∈,总存在,使得g(x0)=f(x1)成立,则函数f(x)在上值域是g(x)在上值域A的子集,即B⊆A①若a=0,g(x)=0,此时A={0},不满足条件②当a≠0时,在是增函数,g(x)∈[﹣+3a,],即A=[﹣+3a,],则,∴综上,实数a的取值范围是故答案为【点睛】本题主要考查了函数恒成立问题,以及函数的值域,同时考查了分类讨论的数学思想,属于中档题15、.【解析】根据题意,列出不等式组,即可求解.【详解】由题意,函数是定义在区间上的严格增函数,因为,可得,解得,所以实数a的取值范围是.故答案为:.16、6【解析】由得出方程组,求出函数解析式即可.【详解】因为函数满足,所以,解之得,所以,所以.【点睛】本题主要考查求函数的值,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用并集和补集运算法则进行计算;(2)根据集合间的包含关系,比较端点值的大小,求出实数a的取值范围.【小问1详解】当时,,所以,则;【小问2详解】因为A真含于B,所以满足或,解得:,所以实数a的取值范围是18、(1);(2).【解析】(1)根据平面向量基本定理可得,整理可得结果;(2)根据平面向量基本定理可求得,,根据数量积的运算法则代入模长和夹角,整理可求得结果.【详解】(1)由得:,(2)由得:又,,且与的夹角为则【点睛】本题考查平面向量基本定理的应用、平面向量数量积的求解,关键是能将所求向量的数量积通过平面向量基本定理转化为已知模长和夹角的向量的数量积运算.19、(1)奇函数,证明见解析;(2)答案见解析,证明见解析;(3),.【解析】(1)利用奇偶性定义判断奇偶性.(2)利用单调性定义,结合作差法、分类讨论思想求的单调性.(3)由题设得且,结合(2)有在上递减,结合函数的区间值域,求参数a、n即可.【小问1详解】由题设有,可得函数定义域为,,所以为奇函数.【小问2详解】令,则,又,则,当时,,即,则在上递增.当时,,即,则在上递减.【小问3详解】由,则,即,结合(2)知:在上递减且值域为,要使在值域是,则且,即,所以,又,故.综上,,【点睛】关键点点睛:第三问,注意,即有在上递减,再根据区间值域求参数.20、(1)的最小值为3,此时;(2)【解析】(1)由可得,则由结合基本不等式即可求出;(2)不等式恒成立等价于对恒成立,利用判别式可得对恒成立,再利用判别式即可求出的范围.【详解】(1),则,,当且仅当,即时等号成立,的最小值为3,此时;(2),则,即对恒成立,则,即对恒成立,则,解得.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论