湖南省邵阳县第一中学2026届高二数学第一学期期末教学质量检测试题含解析_第1页
湖南省邵阳县第一中学2026届高二数学第一学期期末教学质量检测试题含解析_第2页
湖南省邵阳县第一中学2026届高二数学第一学期期末教学质量检测试题含解析_第3页
湖南省邵阳县第一中学2026届高二数学第一学期期末教学质量检测试题含解析_第4页
湖南省邵阳县第一中学2026届高二数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省邵阳县第一中学2026届高二数学第一学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在正方体中,点E是上底面的中心,则异面直线与所成角的余弦值为()A. B.C. D.2.如图,过拋物线的焦点的直线与拋物线交于两点,与其准线交于点(点位于之间)且于点且,则等于()A. B.C. D.3.《周髀算经》是中国最古老的天文学和数学著作,书中提到:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列.若冬至、大寒、雨水的日影子长的和是尺,芒种的日影子长为尺,则冬至的日影子长为()A.尺 B.尺C.尺 D.尺4.△ABC的两个顶点坐标A(-4,0),B(4,0),它的周长是18,则顶点C的轨迹方程是()A. B.(y≠0)C. D.5.圆关于直线对称,则的最小值是()A. B.C. D.6.在抛物线上,横坐标为4的点到焦点的距离为5,则p的值为()A. B.2C.1 D.47.下列抛物线中,以点为焦点的是()A. B.C. D.8.已知抛物线的焦点为,抛物线的焦点为,点在上,且,则直线的斜率为A. B.C. D.9.如图,在长方体中,,,则直线和夹角的余弦值为()A. B.C. D.10.在空间直角坐标系中,点关于平面的对称点为,则()A.-4 B.-10C.4 D.1011.已知为偶函数,且当时,,其中为的导数,则不等式的解集为()A. B.C. D.12.焦点坐标为的抛物线的标准方程是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列的前n项和为,,,则______14.将集合且中所有的元素从小到大排列得到的数列记为,则___________(填数值).15.若数列满足,,设,类比课本中推导等比数列前项和公式的方法,可求得______________16.已知等比数列满足,则_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,.(1)求点P的坐标;(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于,求椭圆上的点到点M的距离的最小值.18.(12分)如图,在三棱柱中,,D为BC的中点,平面平面ABC(1)证明:;(2)已知四边形是边长为2的菱形,且,问在线段上是否存在点E,使得平面EAD与平面EAC的夹角的余弦值为,若存在,求出CE的长度,若不存在,请说明理由19.(12分)在①,②,③这三个条件中任选一个补充在下面问题中,并解答下列题目设首项为2的数列的前n项和为,前n项积为,且______(1)求数列的通项公式;(2)若数列的前n项和为,令,求数列的前n项和20.(12分)已知三角形的内角所对的边分别为,且C为钝角.(1)求cosA;(2)若,,求三角形的面积.21.(12分)求下列不等式的解集:(1);(2).22.(10分)在平面直角坐标系中,已知圆,点P在圆上,过点P作x轴的垂线,垂足为是的中点,当P在圆M上运动时N形成的轨迹为C(1)求C的轨迹方程;(2)若点,试问在x轴上是否存在点M,使得过点M的动直线交C于两点时,恒有?若存在,求出点M的坐标;若不存在,请说明理由

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】建立空间直角坐标系,利用向量夹角求解.【详解】以为原点,为轴正方向建立空间直角坐标系如图所示,设正方体棱长为2,所以,所以异面直线与所成角的余弦值为.故选:B2、B【解析】由题可得,然后结合条件可得,即求.【详解】设于点,准线交轴于点G,则,又,∴,又于点且,∴BE∥AD,∴,即,∴,∴等于.故选:B.3、D【解析】根据题意转化为等差数列,求首项.【详解】设冬至的日影长为,雨水的日影长为,根据等差数列的性质可知,芒种的日影长为,,解得:,,所以冬至的日影长为尺.故选:D4、D【解析】根据三角形的周长得出,再由椭圆的定义得顶点C的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,可求得顶点C的轨迹方程.【详解】因为,所以,所以顶点C的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,即,所以顶点C的轨迹方程是,故选:D.【点睛】本题考查椭圆的定义,由定义求得动点的轨迹方程,求解时,注意去掉不满足的点,属于基础题.5、C【解析】先求出圆的圆心坐标,根据条件可得直线过圆心,从而可得,然后由,展开利用均值不等式可得答案.【详解】由圆可得标准方程为,因为圆关于直线对称,该直线经过圆心,即,,,当且仅当,即时取等号,故选:C.6、B【解析】由方程可得抛物线的焦点和准线,进而由抛物线的定义可得,解之可得值【详解】解:由题意可得抛物线开口向右,焦点坐标,,准线方程,由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5,即,解之可得.故选:B.7、A【解析】由题意设出抛物线的方程,再结合焦点坐标即可求出抛物线的方程.【详解】∵抛物线为,∴可设抛物线方程为,∴即,∴抛物线方程为,故选:A.8、B【解析】根据抛物线的定义,求得p的值,即可得抛物线,的标准方程,求得抛物线的焦点坐标后,再根据斜率公式求解.【详解】因为,所以,解得,所以直线的斜率为.故选B.【点睛】本题考查了抛物线的定义的应用,考查了抛物线的简单性质,涉及了直线的斜率公式;抛物线上的点到焦点的距离等于其到准线的距离;解题过程中注意焦点的位置.9、D【解析】如图建立空间直角坐标系,分别求出的坐标,由空间向量夹角公式即可求解.【详解】如图:以为原点,分别以,,所在的直线为,,轴建立空间直角坐标系,则,,,,所以,,所以,所以直线和夹角的余弦值为,故选:D.10、A【解析】根据关于平面对称的点的规律:横坐标、纵坐标保持不变,竖坐标变为它的相反数,即可求出点关于平面的对称点的坐标,再利用向量的坐标运算求.【详解】解:由题意,关于平面对称的点横坐标、纵坐标保持不变,竖坐标变为它的相反数,从而有点关于对称的点的坐标为(2,−1,-3).故选:A【点睛】本题以空间直角坐标系为载体,考查点关于面的对称,考查数量积的坐标运算,属于基础题11、A【解析】根据已知不等式和要求解的不等式特征,构造函数,将问题转化为解不等式.通过已知条件研究g(x)的奇偶性和单调性即可解该不等式.【详解】令,则根据题意可知,,∴g(x)是奇函数,∵,∴当时,,单调递减,∵g(x)是奇函数,g(0)=0,∴g(x)在R上单调递减,由不等式得,.故选:A.12、D【解析】依次确定选项中各个抛物线的焦点坐标即可.【详解】对于A,的焦点坐标为,A错误;对于B,的焦点坐标为,B错误;对于C,焦点坐标为,C错误;对于D,的焦点坐标为,D正确.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、-1【解析】由已知及等差数列通项公式、前n项和公式,列方程求基本量即可.【详解】若公差为,则,可得.故答案为:.14、992【解析】列举数列的前几项,观察特征,可得出.详解】由题意得观察规律可得中,以为被减数的项共有个,因为,所以是中的第5项,所以.故答案为:992.15、n【解析】先对两边同乘以4,再相加,化简整理即可得出结果.【详解】由①得:②所以①②得:,所以,,故答案为【点睛】本题主要考查类比推理的思想,结合错位相减法思想即可求解,属于基础题型.16、84【解析】设公比为q,求出,再由通项公式代入可得结论【详解】设公比为q,则,解得所以故答案为:84三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(,).(2)【解析】(1)根据条件列关于P点坐标得方程组,解得结果,(2)先根据点到直线距离公式结合条件解得点M坐标,再建立的函数解析式,最后根据二次函数性质求最小值.【详解】解:(1)由已知可得点A(-6,0),F(4,0)设点P(,),则={+6,},={-4,},由已知可得则2+9-18=0,解得=或=-6.由于>0,只能=,于是=.∴点P的坐标是(,).(2)直线AP的方程是-+6=0.设点M(,0),则M到直线AP的距离是.于是=,又-6≤≤6,解得=2.椭圆上的点(,)到点M的距离为,则,由于-6≤≤6,∴当=时,取得最小值.【点睛】本题考查直线与椭圆位置关系,考查基本分析求解能力,属中档题.18、(1)证明见解析(2)存在,1【解析】(1)由面面垂直证明线面垂直,进而证明线线垂直;(2)建立空间直角坐标系,利用空间向量进行求解.【小问1详解】∵,且D为BC的中点,∴,因为平面平面ABC,交线为BC,AD⊥BC,AD面ABC,所以AD⊥面,因为面,所以.【小问2详解】假设存在点E,满足题设要求连接,,∵四边形为边长为2的菱形,且,∴为等边三角形,∵D为BC的中点∴,∵平面平面ABC,交线为BC,面,所以面ABC,故以D为原点,DC,DA,分别为x,y,z轴的空间直角坐标系则,,,,设,,设面AED的一个法向量为,则,令,则设面AEC的一个法向量为,则,令,则设平面EAD与平面EAC的夹角为,则解得:,故点E为中点,所以19、(1);(2).【解析】(1)选择不同的条件,再通过构造数列以及累乘法即可求得对应情况下的通项公式;(2)根据(1)中所求,求得,再利用错位相减法求其前项和即可.【小问1详解】选①:∵,即,∴.即,∴数列是常数列,∴,故;选②:∵,∴时,,则,即∴,∴;当时,也满足,∴;选③:得,所以数列是等差数列,首项为2,公差为1则,∴.【小问2详解】由(1)知当时,,∴又∵时,,符合上式,∴∴∴而相减得∴.20、(1)(2)【解析】(1)由正弦定理边化角,可求得角的正弦,由同角关系结合条件可得答案.(2)由(1),由余弦定理,求出边的长,进一步求得面积【小问1详解】因为,由正弦定理得因,所以.因为角为钝角,所以角为锐角,所以【小问2详解】由(1),由余弦定理,得,所以,解得或,不合题意舍去,故的面积为=21、(1)(2)【解析】(1)根据一元二次不等式的解法求得不等式的解集.(2)根据分式不等式的解法求得不等式的解集.【小问1详解】不等式等价于,解得.∴不等式的解集为.【小问2详解】不等式等价于,解得或.∴不等式的解集为.22、(1);(2)不存在,理由见解析.【解析】(1)设,根据中点坐标公式用N的坐标表示P的坐标,将P的坐标代入圆M的方程化简即可得N的轨迹方程;(2)假设存在,设M为(m,0),设直线l斜率为k,表示其方程,l方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论