北京师范大学第三附属中学八年级上册期末数学模拟试卷及答案_第1页
北京师范大学第三附属中学八年级上册期末数学模拟试卷及答案_第2页
北京师范大学第三附属中学八年级上册期末数学模拟试卷及答案_第3页
北京师范大学第三附属中学八年级上册期末数学模拟试卷及答案_第4页
北京师范大学第三附属中学八年级上册期末数学模拟试卷及答案_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京师范大学第三附属中学八年级上册期末数学模拟试卷及答案一、选择题1.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边长为()A.7cm B.3cm C.7cm或3cm D.5cm2.下列因式分解正确的是()A. B.C. D.3.我国古代许多关于数学的发现都曾位居世界前列,其中“杨辉三角”就是一例,如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(为正整数)的展开式(按的次数由大到小的顺序排列)的系数规律,例如,第四行的四个数1,3,3,1恰好对应着展开式中的系数,请你猜想的展开式中含项的系数是()A.10 B.12 C.9 D.84.如图,与都是等边三角形,,下列结论中,正确的个数是()①;②;③;④若,且,则.A.1 B.2 C.3 D.45.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90° B.120° C.270° D.360°6.如图,已知为三边垂直平分线的交点,且,则的度数为()A. B. C. D.7.如图,有一块直角三角形纸片,两直角边,.现将直角边沿直线折叠,使它落在斜边上,且与重合,则等于()A. B. C. D.8.如图,BP平分∠ABC,∠ABC=∠BAP=60°,若△ABC的面积为2cm2,则△PBC的面积为()A.0.8cm2 B.1cm2 C.1.2cm2 D.无法确定9.在△ABC中,AB=10,BC=12,BC边上的中线AD=8,则△ABC边AB上的高为()A.8 B.9.6 C.10 D.1210.如图,已知,点,,,在射线上,点,,,在射线上,,,,均为等边三角形.若,则的边长为()A. B. C. D.二、填空题11.已知的值为4,若分式中的、均扩大2倍,则的值为__________.12.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于的等式为________.13.如图,在△ABC中,DE是AB的垂直平分线,且分别交AB、AC于点D和E,∠A=50°,∠C=60°,则∠EBC等于_____度.14.分解因式-2a2+8ab-8b2=______________.15.如果一个正多边形的中心角为72°,那么这个正多边形的边数是.16.已知是一个完全平方式,那么m的值为_________________17.如图,在△ABC中,CD是∠ACB的平分线,DE∥BC交AC于点E,若DE=6cm,AE=5cm,则AC=_____cm.18.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是___________.19.一个多边形的每个外角的度数都是60°,则这个多边形的内角和为______.20.如图,在△ABC中,AB=10,AC=6,BC=8,将△ABC折叠,使点C落在AB边上的点E处,AD是折痕,则△BDE的周长为_____.三、解答题21.如图所示,△ABC中,AB=BC,DE⊥AB于点E,DF⊥BC于点D,交AC于F.⑴若∠AFD=155°,求∠EDF的度数;⑵若点F是AC的中点,求证:∠CFD=∠B.22.如图,在中,,.(1)作的角平分线BE(点E在AC上;用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,求的度数.23.先化简:,其中从,,中选一个恰当的数求值.24.已知分式:,解答下列问题:(1)化简分式;(2)当x=3时,求分式的值;(3)原分式的值能等于-1吗?为什么?25.如图,在中,平分交于点,点是边上一点,连接,若,求证:.26.如图,中,,,平分,于,,求的度数.27.数学课堂上,老师提出问题:可以通过通分将两个分式的和表示成一个分式的形式,是否也可以将一个分式表示成两个分式和的形式?其中这两个分式的分母分别为x+1和x-1,小明通过观察、思考,发现可以用待定系数法解决上面问题.具体过程如下:设则有故此解得所以=问题解决:(1)设,求A、B.(2)直接写出方程的解.28.如图,已知、的平分线相交于点,过点且.(1)若,,求的度数;(2)若,,求、的度数.29.观察下列等式:第1个等式:;第2个等式:;第3个等式:;第4个等式:;……请回答下列问题:(1)按以上规律,用含n的式子表示第n个等式:==(n为正整数)(2)求的值.30.如图,,点在直线上,射线经过点,平分交于点.(1)求证:;(2)若,求的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】分3cm长的边是腰和底边两种情况进行讨论即可求解.【详解】解:当长是3cm的边是底边时,三边为3cm,5cm,5cm,等腰三角形成立;当长是3cm的边是腰时,底边长是:13-3-3=7cm,而3+3<7,不满足三角形的三边关系.故底边长是:3cm.故选:B.【点睛】本题主要考查了等腰三角形的计算,正确理解分两种情况讨论,并且注意到利用三角形的三边关系定理,是解题的关键.2.B解析:B【解析】【分析】根据因式分解的定义进行选择即可.【详解】A.,不是因式分解,故本选项不符合题意;B.,故本选项符合题意,C.,故本选项不符合题意;D.,故本选项不符合题意;故选B【点睛】此题考查提公因式法与公式法的综合运用,因式分解-十字相乘法,掌握运算法则是解题关键3.A解析:A【解析】【分析】根据“杨辉三角”的构造法则即可得.【详解】由“杨辉三角”的构造法则得:的展开式的系数依次为,因为系数是按的次数由大到小的顺序排列,所以含项的系数是第3个,即为10,故选:A.【点睛】本题考查了多项式乘法中的规律性问题,理解“杨辉三角”的构造法则是解题关键.4.C解析:C【解析】【分析】利用全等三角形的判定和性质一一判断即可.【详解】解:∵与都是等边三角形∴AD=AB,AC=AE,∠DAB=∠EAC=60°∴∠DAB+∠BAC=∠EAC+∠BAC即∠DAC=∠EAB∴∴,①正确;∵∴∠ADO=∠ABO∴∠BOD=∠DAB=60°,②正确∵∠BDA=∠CEA=60°,∠ADC≠∠AEB∴∠BDA-∠ADC≠∠CEA-∠AEB∴,③错误∵∴∠DAC+∠BCA=180°∵∠DAB=60°,∴∠BCA=180°-∠DAB-∠BAC=30°∵∠ACE=60°∴∠BCE=∠ACE+∠BCA=60°+30°=90°∴④正确故由①②④三个正确,故选C【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、角平分线的判定定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.5.B解析:B【解析】【分析】先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.【详解】∵图中是三个等边三角形,∠3=60°,∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,∠BAC=180°-60°-∠1=120°-∠1,∵∠ABC+∠ACB+∠BAC=180°,∴60°+(120°-∠2)+(120°-∠1)=180°,∴∠1+∠2=120°.故选B.【点睛】考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.6.B解析:B【解析】【分析】延长AO交BC于D,根据垂直平分线的性质可得到AO=BO=CO,再根据等边对等角的性质得到∠OAB=∠OBA,∠OAC=∠OCA,再由三角形的外角性质可求得∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA,从而不难求得∠BOC的度数.【详解】延长AO交BC于D.∵点O在AB的垂直平分线上.∴AO=BO.同理:AO=CO.∴∠OAB=∠OBA,∠OAC=∠OCA.∵∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA.∴∠BOD=2∠OAB,∠COD=2∠OAC.∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2(∠OAB+∠OAC)=2∠BAC.∵∠A=50°.∴∠BOC=100°.故选:B.【点睛】此题主要考查:(1)线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.7.B解析:B【解析】【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在Rt△DEB中利用勾股定理解决.【详解】解:在Rt△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB−AE=10−6=4,设CD=DE=x,在Rt△DEB中,∵,∴,∴x=3,∴CD=3.故答案为:B.【点睛】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键,学会转化的思想去思考问题.8.B解析:B【解析】【分析】延长AP交BC于点D,构造出,得,再根据三角形等底同高面积相等,得到.【详解】解:如图,延长AP交BC于点D,∵BP是的角平分线,∴,∵,∴,∴,在和中,,∴,∴,根据三角形等底同高,,,∴.故选:B.【点睛】本题考查全等三角形的性质和判定,角平分线的性质,解题的关键是作辅助线构造全等三角形.9.B解析:B【解析】【分析】如图,作与E,利用勾股定理的逆定理证明,再利用面积法求出EC即可.【详解】如图,作与E.是的中线,BC=12,BD=6,,故选B.【点睛】本题主要考查勾股定理的逆定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,学会面积法求三角形的高.10.B解析:B【解析】【分析】根据等腰三角形的性质以及平行线的性质得出以及,得出进而得出答案.【详解】解:∵是等边三角形,∴∵∠O=30°,∴,∵,∴,∴在中,∵∴,同法可得∴的边长为:,故选:B.【点睛】本题考查的是等边三角形的性质以及等腰三角形的性质,根据已知得出,得出进而发现规律是解题关键.二、填空题11.8【解析】【分析】首先把分式中的x、y均扩大2倍,然后约分化简,进而可得答案.【详解】解:分式中的x、y均扩大2倍得:=2×4=8,故答案为:8.【点睛】本题考查了分式的基本性质,关解析:8【解析】【分析】首先把分式中的x、y均扩大2倍,然后约分化简,进而可得答案.【详解】解:分式中的x、y均扩大2倍得:=2×4=8,故答案为:8.【点睛】本题考查了分式的基本性质,关键是掌握分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.12.(a+b)2﹣(a﹣b)2=4ab【解析】【分析】根据长方形面积公式列①式,根据面积差列②式,得出结论.【详解】S阴影=4S长方形=4ab①,S阴影=S大正方形﹣S空白小正方形=(a+b解析:(a+b)2﹣(a﹣b)2=4ab【解析】【分析】根据长方形面积公式列①式,根据面积差列②式,得出结论.【详解】S阴影=4S长方形=4ab①,S阴影=S大正方形﹣S空白小正方形=(a+b)2﹣(b﹣a)2②,由①②得:(a+b)2﹣(a﹣b)2=4ab.故答案为(a+b)2﹣(a﹣b)2=4ab.【点睛】本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出.13.20【解析】【分析】根据三角形内角和定理求出∠ABC,根据线段垂直平分线的性质得到EA=EB,得到∠EBA=∠A=50°,结合图形计算,得到答案.【详解】解:∵A=50°,∠C=60°,解析:20【解析】【分析】根据三角形内角和定理求出∠ABC,根据线段垂直平分线的性质得到EA=EB,得到∠EBA=∠A=50°,结合图形计算,得到答案.【详解】解:∵A=50°,∠C=60°,∴∠ABC=180°-50°-60°=70°,∵DE是AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=50°,∴∠EBC=∠ABC-∠EBA=70°-50°=20°,故答案为:20.【点睛】本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14.-2(a-2b)2【解析】【分析】【详解】解:-2a2+8ab-8b2=-2(a2-4ab+4b2)=-2(a-2b)2故答案为-2(a-2b)2解析:-2(a-2b)2【解析】【分析】【详解】解:-2a2+8ab-8b2=-2(a2-4ab+4b2)=-2(a-2b)2故答案为-2(a-2b)215.5【解析】试题分析:中心角的度数=,考点:正多边形中心角的概念.解析:5【解析】试题分析:中心角的度数=,考点:正多边形中心角的概念.16.【解析】【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定的值.【详解】解:,,解得.故答案为:.【点睛】本题主要考查了完全平方式,根据平方项确定出这两解析:【解析】【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定的值.【详解】解:,,解得.故答案为:.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.17.11【解析】【分析】由CD是∠ACB的平分线,可得∠ACD=∠BCD,而DE∥BC,则∠BCD=∠EDC,于是∠ACD=∠EDC,再利用等角对等边可求出DE=CE,从而求出AC的长.【详解】解析:11【解析】【分析】由CD是∠ACB的平分线,可得∠ACD=∠BCD,而DE∥BC,则∠BCD=∠EDC,于是∠ACD=∠EDC,再利用等角对等边可求出DE=CE,从而求出AC的长.【详解】∵CD是∠ACB的平分线,.∴∠ACD=∠BCD,.又∵DE∥BC,.∴∠BCD=∠EDC..∴∠ACD=∠EDC..∴DE=CE..∴AC=AE+CE=5+6=11..故答案为11.【点睛】本题利用了角平分线性质以及等腰三角形的性质、平行线的性质.对线段的等量代换是正确解答本题的关键.18.50【解析】【分析】易证△AEF≌△BAG,△BCG≌△CDH即可求得AF=BG,AG=EF,GC=DH,BG=CH,即可求得梯形DEFH的面积和△AEF,△ABG,△CGB,△CDH的面积,解析:50【解析】【分析】易证△AEF≌△BAG,△BCG≌△CDH即可求得AF=BG,AG=EF,GC=DH,BG=CH,即可求得梯形DEFH的面积和△AEF,△ABG,△CGB,△CDH的面积,即可解题.【详解】∵∠EAF+∠BAG=90°,∠EAF+∠AEF=90°,∴∠BAG=∠AEF,∵在△AEF和△BAG中,,∴△AEF≌△BAG,(AAS)同理△BCG≌△CDH,∴AF=BG=3,AG=EF=6,GC=DH=4,BG=CH=3,∵梯形DEFH的面积=(EF+DH)•FH=80,S△AEF=S△ABG=AF•AE=9,S△BCG=S△CDH=CH•DH=6,∴图中实线所围成的图形的面积S=80-2×9-2×6=50,故答案为:50.【点睛】本题考查了全等三角形的判定和性质,本题中求证△AEF≌△BAG,△BCG≌△CDH是解题的关键.19.720°【解析】【分析】多边形的外角和计算公式为:边数×外角的度数=360°,根据公式即可得出多边形的边数,然后再根据多边形的内角和公式求出它的内角和,n边形内角和等于(n-2)×180°.解析:720°【解析】【分析】多边形的外角和计算公式为:边数×外角的度数=360°,根据公式即可得出多边形的边数,然后再根据多边形的内角和公式求出它的内角和,n边形内角和等于(n-2)×180°.【详解】解:∵任何多边形的外角和是360°,此正多边形每一个外角都为60°,边数×外角的度数=360°,∴n=360°÷60°=6,∴此正多边形的边数为6,则这个多边形的内角和为(n-2)×180°,(6-2)×180°=720°,故答案为720°.【点睛】本题主要考查了多边形内角和及外角和定理,熟知“任何多边形的外角和是360°,n边形内角和等于(n-2)×180°”是解题的关键.20.12【解析】【分析】根据题意利用翻折不变性可得AE=AC,CD=DE进而利用DE+BD+BE=CD+BD+E=BC+BE即可解决问题.【详解】解:由翻折的性质可知:AE=AC,CD=DE,解析:12【解析】【分析】根据题意利用翻折不变性可得AE=AC,CD=DE进而利用DE+BD+BE=CD+BD+E=BC+BE即可解决问题.【详解】解:由翻折的性质可知:AE=AC,CD=DE,且AB=10,AC=6,BC=8,∴BE=AB-AE=10-6=4,∴△BDE的周长=DE+BD+BE=CD+BD+E=BC+BE=8+4=12.故答案为:12.【点睛】本题考查翻折变换,解题的关键是熟练掌握翻折变换的性质.三、解答题21.(1)50°;(2)见解析【解析】试题分析:⑴根据等腰三角形的性质、三角形的内角和定理与四边形的内角和为360°,可求得所求角的度数.⑵连接BF,根据三角形内角和定理与等腰三角形三线合一,可知.试题解析:⑴∵∠AFD=155°,∴∠DFC=25°,∵DF⊥BC,DE⊥AB,∴∠FDC=∠AED=90°,在Rt△EDC中,∴∠C=90°﹣25°=65°,∵AB=BC,∴∠C=∠A=65°,∴∠EDF=360°﹣65°﹣155°﹣90°=50°.⑵连接BF,∵AB=BC,且点F是AC的中点,∴BF⊥AC,,∴∠CFD+∠BFD=90°,∠CBF+∠BFD=90°,∴∠CFD=∠CBF,∴.22.(1)见解析;(2)95°【解析】【分析】(1)依据角平分线的作法,即可得到△ABC的角平分线BE;(2)依据三角形内角和定理,即可得到∠AEB的度数,再根据邻补角的定义,即可得到∠BEC的度数.【详解】(1)如图(满足“三弧一线”可得)线段BE即为所求(2)由(1)得,BE平分∵∴∵∴∵∴【点睛】本题主要考查了三角形内角和定理以及基本作图,解决问题的关键是掌握角平分线的作法.23.,2【解析】【分析】原式利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把代入计算即可求出值.【详解】解:因为m+1,m-1,m-2所以m,m,m当时,原式.【点睛】此题考查了解分式方程,以及分式的化简求值,熟练掌握运算法则是解本题的关键.24.(1);(2)当时,分式的值为2;(3)原分式的值不能等于-1.理由见解析.【解析】【分析】(1)先做括号内的减法,注意把各分子、分母先因式分解,约分后再做减法运算;做除法时要注意先把除法运算转化为乘法运算,然后约分化为最简形式;(2)将x=3代入计算即可;(3)令,求解即可判断.【详解】(1);(2)当时,原式;(2)如果,那么,解得,又因为时,原分式无意义.故原分式的值不能等于.【点睛】本题考查了分式的化简求值.解这类题的关键是利用分解因式的方法化简分式,熟练掌握运算顺序与运算法则是解题的关键.25.证明见解析【解析】【分析】先求出∠BAC的度数,进而得出∠BAD,因为∠BAD=40°=∠ADE,由“内错角相等,两直线平行”即可判断.【详解】证明:在中,,平分,【点睛】本题考查角的运算,角平分线的性质定理以及平行线的判定,掌握角平分线的性质是解题的关键.26.【解析】【分析】首先根据三角形的内角和定理求得∠ACB的度数,以及∠BCD的度数,根据角的平分线的定义求得∠BCE的度数,则∠ECD可以求解,然后在△CDF中,利用内角和定理即可求得∠CDF的度数.【详解】解:∵,,∴.∵平分,∴.∵于,∴,.∴.∵,∴,∴.【点睛】本题考查了三角形的内角和等于180°以及角平分线的定义,是基础题,准确识别图形是解题的关键.27.(1)A=1,B=-2;(2)【解析】【分析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论