版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽源市重点中学2026届数学高一上期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.我国著名数学家华罗庚曾说:数缺形时少直观,形少数时难人微,数形结合百般好,割裂分家万事休.在数学的学习和研究中,有时可凭借函数的解析式琢磨函数图像的特征.如函数,的图像大致为()A. B.C. D.2.函数部分图像如图所示,则的值为()A. B.C. D.3.下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则4.利用二分法求方程的近似解,可以取得一个区间A. B.C. D.5.在底面为正方形的四棱锥中,侧面底面,,,则异面直线与所成的角为()A. B.C. D.6.在同一坐标系中,函数与大致图象是()A. B.C. D.7.已知,则的最小值为()A.2 B.3C.4 D.58.过圆C:(x﹣2)2+(y﹣2)2=4的圆心,作直线分别交x,y正半轴于点A,B,△AOB被圆分成四部分(如图),若这四部分图形面积满足SI+SⅣ=SⅡ+SⅢ,则这样的直线AB有A.0条 B.1条C.2条 D.3条9.以下四组数中大小比较正确的是()A. B.C. D.10.在某次测量中得到的样本数据如下:.若样本数据恰好是样本数据都加2后所得数据,则两样本的下列数字特征对应相同的是()A.众数 B.平均数C.标准差 D.中位数二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则_________12.将正方形沿对角线折成直二面角,有如下四个结论:①;②是等边三角形;③与所成的角为,④取中点,则为二面角的平面角其中正确结论是__________.(写出所有正确结论的序号)13.在直三棱柱中,若,则异面直线与所成的角等于_________.14.若,则_____15.已知函数f(x)的定义域是[-1,1],则函数f(log2x)的定义域为____16.幂函数的图象经过点,则=____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是二次函数,,(1)求的解析式;(2)解不等式18.已知函数,.(1)若在上单调递增,求实数a的取值范围;(2)求关于的不等式的解集.19.已知函数,(1)求的解集;(2)当时,若方程有三个不同的实数解,求实数k的取值范围20.如图,在四棱锥中,底面是菱形,,且侧面平面,点是的中点(1)求证:(2)若,求证:平面平面21.设为奇函数,为常数.(1)求的值(2)若对于上的每一个的值,不等式恒成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据题意求出函数的定义域并判断出函数的奇偶性,再代入特殊值点即可判断答案.【详解】由题意,函数定义域为,,于是排除AD,又,所以C错误,B正确.故选:B.2、C【解析】根据的最值得出,根据周期得出,利用特殊点计算,从而得出的解析式,再计算.【详解】由函数的最小值可知:,函数的周期:,则,当时,,据此可得:,令可得:,则函数的解析式为:,.故选:C.【点睛】本题考查了三角函数的图象与性质,属于中档题.3、A【解析】AD选项,可以用不等式基本性质进行证明;BC选项,可以用举出反例.【详解】,显然均大于等于0,两边平方得:,A正确;当时,满足,但,B错误;若,当时,则,C错误;若,,则,D错误.故选:A4、D【解析】根据零点存在定理判断【详解】设,则函数单调递增由于,,∴在上有零点故选:D.【点睛】本题考查方程解与函数零点问题.掌握零点存在定理是解题关键5、C【解析】由已知可得PA⊥平面ABCD,底面ABCD为正方形,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,因为PB∥CM,所以ACM就是异面直线PB与AC所成的角,再求解即可.【详解】由题意:底面ABCD为正方形,侧面底面,,面面,PA⊥平面ABCD,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,∵PM∥AD,AD∥BC,PM=AD,AD=BC∴PBCM是平行四边形,∴PB∥CM,所以∠ACM就是异面直线PB与AC所成的角设PA=AB=a,在三角形ACM中,,∴三角形ACM是等边三角形所以∠ACM等于60°,即异面直线PB与AC所成的角为60°故选:C.【点睛】思路点睛:先利用面面垂直得到PA⊥平面ABCD,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,得到∠ACM就是异面直线PB与AC所成的角6、B【解析】根据题意,结合对数函数与指数函数的性质,即可得出结果.【详解】由指数函数与对数函数的单调性知:在上单调递增,在上单调递增,只有B满足.故选:B.7、A【解析】由可得,将整理为,再利用基本不等式即可求解.【详解】因为,所以,所以,当且仅当,即时取等号,所以的最小值为.故选:A8、B【解析】数形结合分析出为定值,因此为定值,从而确定直线AB只有一条.【详解】已知圆与轴,轴均相切,由已知条件得,第部分的面积是定值,所以为定值,即为定值,当直线绕着圆心C移动时,只有一个位置符合题意,即直线AB只有一条.故选:B【点睛】本题考查直线与圆的实际应用,属于中档题.9、C【解析】结合指数函数、对数函数、幂函数性质即可求解详解】对A,,故,错误;对B,在第一象限为增函数,故,错误;对C,为增函数,故,正确;对D,,,故,错误;故选:C【点睛】本题考查根据指数函数,对数函数,幂函数性质比较大小,属于基础题10、C【解析】分别求两个样本的数字特征,再判断选项.【详解】A样本数据是:,样本数据是:,A样本的众数是48,B样本的众数是50,故A错;A样本的平均数是,B样本的平均数是,故B错;A样本的标准差B样本的标准差,,故C正确;A样本的中位数是,B样本的中位数是,故D错.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】运用代入法进行求解即可.【详解】,故答案为:12、①②④【解析】如图所示,取中点,则,,所以平面,从而可得,故①正确;设正方形边长为,则,所以,又因为,所以是等边三角形,故②正确;分别取,的中点为,,连接,,.则,且,,且,则是异面直线,所成的角在中,,,∴则是正三角形,故,③错误;如上图所示,由题意可得:,则,由可得,据此可知:为二面角的平面角,说法④正确.故答案为:①②④.点睛:(1)有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变(2)研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题13、【解析】如图以点为坐标原点,分别以为轴建立空间直角坐标系,利用空间向量求解即可.【详解】解:因为三棱柱为直三棱柱,且,所以以点为坐标原点,分别以为轴建立空间直角坐标系,设,则,所以,所以,因为异面直线所成的角在,所以异面直线与所成的角等于,故答案为:【点睛】此题考查异面直线所成角,利用了空间向量进行求解,属于基础题.14、【解析】首先求函数,再求的值.【详解】设,则所以,即,,.故答案为:15、【解析】根据给定条件列出使函数f(log2x)有意义的不等式组,再求出其解集即可.【详解】因函数f(x)的定义域是[-1,1],则在f(log2x)中,必有,解不等式可得:,即,所以函数f(log2x)的定义域为.故答案为:16、2【解析】根据幂函数过点,求出解析式,再有解析式求值即可.【详解】设,则,所以,故,所以.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据得对称轴为,再结合顶点可求解;(2)由(1)得,然后直接解不等式即可.【小问1详解】由,知此二次函数图象的对称轴为,又因为,所以是的顶点,所以设因,即所以得所以【小问2详解】因为所以化为,即或不等式的解集为18、(1);(2)答案见解析.【解析】(1)根据二次函数图象的性质确定参数a的取值区间;(2)确定方程的根或,讨论两根的大小关系得出不等式的解集.【详解】(1)因为函数的图象为开口向上的抛物线,其对称轴为直线由二次函数图象可知,的单调增区间为因为在上单调递增,所以所以,所以实数的取值区间是;(2)由得:方程的根为或①当时,,不等式的解集是②当时,,不等式的解集是③当时,,不等式的解集是综上,①当时,不等式的解集是②当时,不等式的解集是③当时,不等式的解集是19、(1)答案见解析(2)【解析】(1),然后对和的大小关系进行讨论,利用一元二次不等式的解法即可得答案;(2)令,则,解得或.当时,有一解;由题意,当时,必有两解,数形结合即可求解.【小问1详解】解:,①当时,不等式的解集为;②当时,不等式的解集为;③当时,不等式的解集为【小问2详解】解:当时,令,则,解得或,当时,,得,所以当时,要使方程有三个不同的实数解,则必须有有两个解,即与的图象有2个不同的交点,由图可知,解得,所以实数k的取值范围为.20、(1)见解析;(2)见解析【解析】分析:(1)可根据为等腰三角形得到,再根据平面平面可以得到平面,故.(2)因及是中点,从而有,再根据平面得到,从而平面,故平面平面.详解:(1)证明:因为,点是棱的中点,所以,平面.因为平面平面,平面平面,平面,所以平面,又因为平面,所以.(2)证明:因为,点是的中点,所以.由(1)可得,又因为,所以平面,又因为平面,所以平面平面点睛:线线垂直的证明,可归结为线面垂直,也可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2026学年青岛版三年级上册数学期末模拟测试题卷及答案解析
- 《江苏省知名品牌评价规范》征求意见稿
- 多模态知识融合
- 塑料家具轻量化设计-第1篇
- 中班健康:保护眼睛
- 人教版英语八年级上册教学课件Unit 8 Let's Communicate Section B1a -1e
- 2026 年中职康复技术(康复器械使用)试题及答案
- 企业防雷安全试题及答案
- AR增强现实营销活动合作合同协议2025
- 多模态交互中双击事件反馈
- 装配式建筑施工重点难点及保证措施
- 主动脉夹层的护理常规
- 2025年出入境管理信息系统考试试卷及答案
- 肉牛合作养殖方案(3篇)
- 骨盆骨折患者麻醉管理要点
- 2025贵阳人文科技学院教师招聘考试试题
- 高职院校产教融合共同体建设国内外研究动态及启示
- T/CWAN 0068-2023铜铝复合板
- 儿童寓言故事-乌鸦喝水
- 弱电系统维护中的安全和文明措施
- 紧急状态下护理人力资源调配
评论
0/150
提交评论