初中苏教七年级下册期末数学必考知识点试卷A卷及解析_第1页
初中苏教七年级下册期末数学必考知识点试卷A卷及解析_第2页
初中苏教七年级下册期末数学必考知识点试卷A卷及解析_第3页
初中苏教七年级下册期末数学必考知识点试卷A卷及解析_第4页
初中苏教七年级下册期末数学必考知识点试卷A卷及解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初中苏教七年级下册期末数学必考知识点试卷A卷及解析一、选择题1.下列运算错误的是()A. B.C. D.2.如图,属于同位角的是()A.与 B.与 C.与 D.与3.若11a7xby+7与-7a2-4yb2x是同类项,则()A. B.C. D.4.若,则下列不等式中正确的是()A. B. C. D.5.若关于的不等式组的解集为,则的值为()A.-6 B.6 C.-8 D.86.在下列命题中:①同旁内角互补;②两点确定一条直线;③两条直线相交,有且只有一个交点;④若一个角的两边分别与另一个角的两边平行,那么这两个角相等.其中属于真命题的有()A.1个 B.2个 C.3个 D.4个7.观察下列按一定规律排列的n个数:2,4,6,8,10,12,…,若最后三个数之和是3000,则n等于()A.500 B.501 C.1000 D.10028.如图,已知直线、被直线所截,,E是平面内任意一点(点E不在直线、、上),设,.下列各式:①,②,③,④,的度数可能是()A.②③ B.①④ C.①③④ D.①②③④二、填空题9.计算:(﹣2x)2×3a=__________.10.命题“若,则”,这个命题是_____命题.(填“真”或“假”)11.如果一个多边形的每个外角都等于,那么这个多边形的内角和是______度.12.若,则_____.13.已知是关于、的二元一次方程组的解,则______.14.某小区有一块长方形的草地(如图),长18米,宽10米,空白部分为两条宽度均为2米的小路,则草地的实际面积______m2.15.若n边形的每个内角都为135°,则n=_____.16.如图,在ABC中,D是AB上的一点,且AD=2BD,E是BC的中点,CD、AE相交于点F.若EFC的面积为1,则ABC的面积为_____.17.计算(1);(2);18.因式分解:(1)2m2﹣4mn+2n2;(2)x4﹣1.19.解方程组:(1)(2)20.解不等式组,并把解集在数轴上表示出来.三、解答题21.如图,AB∥CD,直线EF交直线AB、CD于点M、N,NP平分∠ENC交直线AB于点P,∠EMB=76°.(1)求∠PNC的度数;(2)若PQ将∠APN分成两部分,且∠APQ:∠QPN=1:3,求∠PQD的度数.22.某农场收割小麦,为了加快速度,决定用两种型号的收割机进行联合作业.已知台大型收割机和台小型收割机可以收割小麦公顷;台大型收割机和台小型收割机可以收割小麦公顷.(1)问每台大型收割机和每台小型收割机收割小麦各多少公顷?(2)农场要租赁两种型号的收割机一共台,要求3小时完成的小麦收割任务不少于公顷,则至多可以租赁小型收割机几台?23.阅读理解:例1.解方程|x|=2,因为在数轴上到原点的距离为2的点对应的数为±2,所以方程|x|=2的解为x=±2.例2.解不等式|x﹣1|>2,在数轴上找出|x﹣1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为﹣1或3,所以方程|x﹣1|=2的解为x=﹣1或x=3,因此不等式|x﹣1|>2的解集为x<﹣1或x>3.参考阅读材料,解答下列问题:(1)方程|x﹣2|=3的解为;(2)解不等式:|x﹣2|≤1.(3)解不等式:|x﹣4|+|x+2|>8.(4)对于任意数x,若不等式|x+2|+|x﹣4|>a恒成立,求a的取值范围.24.(1)如图1所示,△ABC中,∠ACB的角平分线CF与∠EAC的角平分线AD的反向延长线交于点F;①若∠B=90°则∠F=;②若∠B=a,求∠F的度数(用a表示);(2)如图2所示,若点G是CB延长线上任意一动点,连接AG,∠AGB与∠GAB的角平分线交于点H,随着点G的运动,∠F+∠H的值是否变化?若变化,请说明理由;若不变,请求出其值.25.如图1,点O为直线上一点,过点O作射线,使,将一把直角三角尺的直角顶点放在点O处,一边在射线上,另一边在直线的下方,其中.(1)将图1中的三角尺绕点O顺时针旋转至图2,使一边在的内部,且恰好平分,求的度数;(2)将图1中的三角尺绕点O顺时针旋转至图3,使在的内部,请探究与之间的数量关系,并说明理由.(3)将图1中三角尺绕点O按每秒的速度沿顺时针方向旋转一周,旋转过程中,在第_____秒时,边恰好与射线平行;在第_______秒时,直线恰好平分锐角.【参考答案】一、选择题1.C解析:C【分析】利用同底数幂的除法运算法则判断A,利用单项式除以单项式的计算法则判断B,利用完全平方公式判断C,利用积的乘方运算法则判断D.【详解】解:A、a6÷a2=a4,正确,故此选项不符合题意;B、3a2b÷b=3a2,正确,故此选项不符合题意;C、(a+b)2=a2+2ab+b2,故此选项符合题意;D、(-2a2)3=-8a6,正确,故此选项不符合题意;故选:C.【点睛】本题考查同底数幂的除法am÷an=am-n,幂的乘方(am)n=amn,完全平方公式(a+b)2=a2+2ab+b2,掌握运算法则是解题关键.2.A解析:A【分析】根据同位角、内错角、同旁内角的意义进行判断即可.【详解】解:∠2与∠3是两条直线被第三条直线所截形成的同位角,因此选项A符合题意.∠1与∠4是对顶角,因此选项B不符合题意.∠1与∠3是内错角,因此选项C不符合题意.∠2与∠4同旁内角,因此选项D不符合题意.故选:A.【点睛】本题考查同位角、内错角、同旁内角,理解和掌握同位角、内错角、同旁内角的意义是正确判断的前提.3.B解析:B【详解】∵11a7xby+7与-7a2-4yb2x是同类项,根据同类项的定义可得,由②得,把③代入①得,解得,.把代入③得,y=2×2-7=-3.∴方程组的解是故选B.4.A解析:A【分析】根据不等式的性质逐项判断即得答案.【详解】解:A、若,则,故本选项变形正确,符合题意;B、若,则,故本选项变形错误,不符合题意;C、若,则,故本选项变形错误,不符合题意;D、若,则,故本选项变形错误,不符合题意.故选:A.【点睛】本题考查了不等式的性质,属于基础题型,熟练掌握不等式的性质是解题关键.5.A解析:A【分析】先用字母a,b表示出不等式组的解集2b+3<x<,然后再根据已知解集是-1<x<1,对应得到相等关系2b+3=-1,=1,求出a,b的值再代入所求代数式中即可求解.【详解】解:解不等式组,可得解集为:2b+3<x<,∵不等式组的解集为-1<x<1,∴2b+3=-1,=1,解得a=1,b=-2.代入.故选:A.【点睛】主要考查了一元一次不等式组的解定义,解此类题是要先用字母a,b表示出不等式组的解集,然后再根据已知解集,对应得到相等关系,解关于字母a,b的一元一次方程求出字母a,b的值,再代入所求代数式中即可求解.6.B解析:B【分析】根据有关性质与定理,正确的命题叫真命题,错误的命题叫做假命题,分别对每一项进行判断即可.【详解】①两直线平行,同旁内角互补,是假命题;②两点确定一条直线;是真命题;③两条直线相交,有且只有一个交点,是真命题;④若一个角的两边分别与另一个角的两边平行,那么这两个角相等或互补,是假命题.其中属于真命题的有2个.故选B.【点睛】此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理.7.B解析:B【分析】根据题意列出方程求出最后一个数,除去一半即为n的值.【详解】根据题意可得第n个数为2n,则后三个数分别为2n﹣4,2n﹣2,2n,∴2n﹣4+2n﹣2+2n=3000,解得n=501.故选:B.【点睛】本题考查找规律的题型,关键在于列出方程简化步骤.8.D解析:D【分析】由题意根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α.(2)如图2,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α-β.(4)如图4,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°-α-β.(5)(6)当点E在CD的下方时,同理可得∠AEC=α-β或β-α.综上所述,∠AEC的度数可能为β-α,α+β,α-β,360°-α-β,即①②③④.故选:D.【点睛】本题主要考查平行线的性质的运用,解题时注意两直线平行,同位角相等;两直线平行,内错角相等以及分类讨论.二、填空题9.12ax2【分析】先运算积的乘方,然后单项式与单项式相乘即可.【详解】(﹣2x)2×3a,故答案为:12ax2.【点睛】本题主要考查积的乘方以及单项式与单项式相乘,属于基础题,掌握运算法则是关键.10.真【分析】根据题意判断正误即可确定是真、假命题.【详解】解:命题“若,则a=b”,这个命题是真命题,故答案为:真.【点睛】本题考查了命题与定理的知识,解题的关键是当判断一个命题为假命题时可以举出反例,难度不大.11.1260【分析】首先根据外角和与外角和及每个外角的度数可得多边形的边数,再根据多边形内角和公式180(n-2)计算出答案.【详解】解:∵多边形的每一个外角都等于,∴它的边数为:,∴它的内角和:,故答案为:.【点睛】此题主要考查了多边形的内角和与外角和,根据多边形的外角和计算出多边形的边数是解题关键.12.【分析】利用非负数的性质求出x+y与x−y的值,原式利用平方差公式分解后代入计算即可求出值.【详解】∵∴,即:,∴原式=-5,故填:.【点睛】此题考查了因式分解−运用公式法,熟练掌握平方差公式是解本题的关键.13.-5【分析】根据题意直接将x与y的值代入原方程组并解出a-b和a+b的值,进而利用平方差公式计算即可求出答案.【详解】解:由题意将代入,∴,∴.故答案为:-5.【点睛】本题考查二元一次方程组,解题的关键是熟练运用二元一次方程组的解的定义以及运用平方差公式进行计算.14.【分析】将小路两旁部分向中间平移,直到小路消失,发现草地是一个长为(18﹣2)米、宽为(10﹣2)米的长方形,根据长方形面积=长×宽列式计算即可.【详解】由题意,得草地的实际面积为:(18﹣2)×(10﹣2)=16×8=128(m2).故答案为:128.【点睛】本题考查了生活中的平移现象,通过平移得到草地是一个长为(18﹣2)米、宽为(10﹣2)米的长方形是解决问题的关键.15.8【分析】首先求得外角的度数,然后利用多边形的外角和是360度,列式计算即可求解.【详解】解:外角的度数是:180﹣135=45°,则n=360°÷45°=8.故答案为8.【点睛】本解析:8【分析】首先求得外角的度数,然后利用多边形的外角和是360度,列式计算即可求解.【详解】解:外角的度数是:180﹣135=45°,则n=360°÷45°=8.故答案为8.【点睛】本题考查了正多边形的性质,正确理解多边形的外角和定理是关键.16.【分析】连接BF,如图,根据三角形面积公式,利用AE为中线得S△ABE=S△ACE,S△BEF=S△CEF=1,所以S△ABF=S△ACF,设BDF的面积为S,则ADF的面积为2S,ACF的面积解析:【分析】连接BF,如图,根据三角形面积公式,利用AE为中线得S△ABE=S△ACE,S△BEF=S△CEF=1,所以S△ABF=S△ACF,设BDF的面积为S,则ADF的面积为2S,ACF的面积为3S,利用S△ADC=2S△BCD得到2S+3S=2(S+1+1),然后求得S后计算ABC的面积即可.【详解】解:如图,连接BF,∵AE为中线,∴S△ABE=S△ACE,S△BEF=S△CEF=1,∴S△ABF=S△ACF,设BDF的面积为S,则ADF的面积为2S,ACF的面积为3S,∵S△ADC=2S△BCD,∴2S+3S=2(S+1+1),解得S=,∴ABC的面积=2S+3S+S+1+1=6S+2=6×+2=10.故答案为:10.【点睛】本题是三角形的面积问题,考查了三角形面积与底和高的关系,做好本题要知道以下内容:①两个同高的三角形的面积的比等于对应底的比;②三角形的中线将三角形分成了两个面积相等的三角形,作出正确的辅助线以及熟练掌握相关知识是解决本题的关键.17.(1)-7;(2)8x+13【分析】(1)分别根据绝对值的性质,零指数幂的定义,负整数指数幂的定义以及有理数的乘方的定义计算即可;(2)分别根据完全平方公式以及平方差公式计算即可.【详解】解析:(1)-7;(2)8x+13【分析】(1)分别根据绝对值的性质,零指数幂的定义,负整数指数幂的定义以及有理数的乘方的定义计算即可;(2)分别根据完全平方公式以及平方差公式计算即可.【详解】解:(1)原式=2+1-9+(-1)=-7;(2)原式=4(x2+2x+1)-(4x2-9)=4x2+8x+4-4x2+9=8x+13.【点睛】本题考查了实数的运算以及整式的混合运算,熟记相关定义与公式是解答本题的关键.18.(1)2(m﹣n)2;(2)(x2+1)(x+1)(x﹣1).【分析】(1)综合利用提取公因式法和公式法进行因式分解即可;(2)利用两次平方差公式进行因式分解即可.【详解】解:(1)2m2解析:(1)2(m﹣n)2;(2)(x2+1)(x+1)(x﹣1).【分析】(1)综合利用提取公因式法和公式法进行因式分解即可;(2)利用两次平方差公式进行因式分解即可.【详解】解:(1)2m2﹣4mn+2n2=2(m2﹣2mn+n2)=2(m﹣n)2;(2)x4﹣1=(x2+1)(x2﹣1)=(x2+1)(x+1)(x﹣1).【点睛】本题考查了综合提取公因式法和公式法、公式法进行因式分解,因式分解的主要方法包括:提取公因式法、公式法、十字相乘法、分组分解法等,熟记各方法是解题关键.19.(1);(2).【分析】(1)用代入法解二元一次方程组;(2)用加减消元法解二元一次方程组.【详解】(1)把①代入②,得,解得,把代入①,得,所以原方程组的解是.(2)①×2解析:(1);(2).【分析】(1)用代入法解二元一次方程组;(2)用加减消元法解二元一次方程组.【详解】(1)把①代入②,得,解得,把代入①,得,所以原方程组的解是.(2)①×2,得,③②-③,得,解得,把代入①,得,解得,所以原方程组的解是.【点睛】本题考查了代入消元法和加减消元法解二元一次方程组,熟练代入消元法和加减消元法解二元一次方程组是解题的关键.20.,数轴见解析【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:由①得:由②得:所以不等式组的解为.在数轴解析:,数轴见解析【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:由①得:由②得:所以不等式组的解为.在数轴上表示为:【点睛】本题主要考查了解一元一次不等式组,并在数轴上表示不等式的解集,解题的关键在于能够熟练掌握解一元一次不等式.三、解答题21.(1)52°;(2)32°.【分析】(1)根据AB∥CD,可得∠END=∠EMB=76°,再根据平角定义和角平分线的定义即可求出∠PNC的度数;(2)根据∠APQ:∠QPN=1:3,可得∠QP解析:(1)52°;(2)32°.【分析】(1)根据AB∥CD,可得∠END=∠EMB=76°,再根据平角定义和角平分线的定义即可求出∠PNC的度数;(2)根据∠APQ:∠QPN=1:3,可得∠QPN=3∠APQ,根据AB∥CD,可得∠MPN=∠PNC=52°,再根据平角定义可得∠APQ=32°,进而可得∠PQD的度数.【详解】(1)∵AB∥CD,∴∠END=∠EMB=76°,∴∠ENC=180°﹣∠END=104°,∵NP平分∠ENC,∴∠PNC=∠ENC=52°;(2)∵∠APQ:∠QPN=1:3,∴∠QPN=3∠APQ,∵AB∥CD,∴∠MPN=∠PNC=52°,∴∠APN=180°﹣∠MPN=128°,∴∠APQ+∠QPN=128°,∴4∠APQ=128°,∴∠APQ=32°,∴∠PQD=∠APQ=32°.则∠PQD的度数为32°.【点睛】本题考查了平行线的性质和角平分线的定义,解决本题的关键是掌握平行线的性质.22.(1)每台大型收割机收割公顷,每台小型收割机收割公顷;(2)至多可以租赁小型收割机台.【分析】(1)设每台大型收割机收割公顷,每台小型收割机收割公顷,根据题意列出二元一次方程组,解方程组,解方程解析:(1)每台大型收割机收割公顷,每台小型收割机收割公顷;(2)至多可以租赁小型收割机台.【分析】(1)设每台大型收割机收割公顷,每台小型收割机收割公顷,根据题意列出二元一次方程组,解方程组,解方程组即可求解;(2)设租赁小型收割机台,则租赁大型收割机台,根据3小时完成的小麦收割任务不少于公顷列出不等式,解不等式及即可求解.【详解】解:(1)设每台大型收割机收割公顷,每台小型收割机收割公顷,则解得答:每台大型收割机收割公顷,每台小型收割机收割公顷;(2)设租赁小型收割机台,则租赁大型收割机台,由题意得解得.答:至多可以租赁小型收割机台.【点睛】本题为二元一次方程组和一元一次不等式的综合应用,读懂题意,设出未知数列出方程组、不等式是解题关键.23.(1)x=-1或x=5;(2)1≤x≤3;(3)x>5或x<-3;(4)a≥6【分析】(1)利用在数轴上到2对应的点的距离等于3的点对应的数求解即可;(2)先求出|x-2|=3的解,再求|x-解析:(1)x=-1或x=5;(2)1≤x≤3;(3)x>5或x<-3;(4)a≥6【分析】(1)利用在数轴上到2对应的点的距离等于3的点对应的数求解即可;(2)先求出|x-2|=3的解,再求|x-2|≤3的解集即可;(3)先在数轴上找出|x-4|+|x+2|=8的解,即可得出不等式|x-4|+|x+2|>8的解集;(4)原问题转化为:a大于或等于|x+2|+|x-4|最大值,进行分类讨论,即可解答.【详解】解:(1)∵在数轴上到2对应的点的距离等于3的点对应的数为-1或5,∴方程|x-2|=3的解为x=-1或x=5;(2)在数轴上找出|x-2|=1的解.∵在数轴上到2对应的点的距离等于1的点对应的数为1或3,∴方程|x-2|=1的解为x=1或x=3,∴不等式|x-2|≤1的解集为1≤x≤3.(3)在数轴上找出|x-4|+|x+2|=8的解.由绝对值的几何意义知,该方程就是求在数轴上到4和-2对应的点的距离之和等于8的点对应的x的值.∵在数轴上4和-2对应的点的距离为6,∴满足方程的x对应的点在4的右边或-2的左边.若x对应的点在4的右边,可得x=5;若x对应的点在-2的左边,可得x=-3,∴方程|x-4|+|x+2|=8的解是x=5或x=-3,∴不等式|x-4|+|x+2|>8的解集为x>5或x<-3.(4)原问题转化为:a大于或等于|x+2|+|x-4|最大值.当x≥4时,|x+2|+|x-4|=x+2+x-4=2x-2,当-2<x<4,|x+2|+|x-4|=x+2-x+4=6,当x≤-2时,|x+2|+|x-4|=-x-2-x+4=-2x+2,即|x+2|+|x-4|的最大值为6.故a≥6.【点睛】本题主要考查了绝对值,方程及不等式的知识,是一道材料分析题,通过阅读材料,同学们应当深刻理解绝对值得几何意义,结合数轴,通过数形结合对材料进行分析来解答题目.24.(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°.【分析】(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC解析:(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°.【分析】(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC的外角,可得∠B=∠CAE-∠ACB,再根据∠CAD是△ACF的外角,即可得到∠F=∠CAD-∠ACF=∠CAE-∠ACB=(∠CAE-∠ACB)=∠B;(2)由(1)可得,∠F=∠ABC,根据角平分线的定义以及三角形内角和定理,即可得到∠H=90°+∠ABG,进而得到∠F+∠H=90°+∠CBG=180°.【详解】解:(1)①∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=∠CAE,∠ACF=∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=45°,故答案为45°;②∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=∠CAE,∠ACF=∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论