山东省潍坊市寿光市现代中学2026届高一数学第一学期期末学业水平测试试题含解析_第1页
山东省潍坊市寿光市现代中学2026届高一数学第一学期期末学业水平测试试题含解析_第2页
山东省潍坊市寿光市现代中学2026届高一数学第一学期期末学业水平测试试题含解析_第3页
山东省潍坊市寿光市现代中学2026届高一数学第一学期期末学业水平测试试题含解析_第4页
山东省潍坊市寿光市现代中学2026届高一数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省潍坊市寿光市现代中学2026届高一数学第一学期期末学业水平测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数在上是增函数,则实数的取值范围是()A. B.C. D.2.下列命题中正确的是()A.第一象限角小于第二象限角 B.锐角一定是第一象限角C.第二象限角是钝角 D.平角大于第二象限角3.已知,则下列选项错误的是()A. B.C.的最大值是 D.的最小值是4.若且,则下列不等式中一定成立的是A. B.C. D.5.若函数是偶函数,则的单调递增区间为()A. B.C. D.6.设为偶函数,且在区间上单调递减,,则的解集为()A.(-1,1) B.C. D.(2,4)7.已知一组数据为20,30,40,50,50,50,70,80,其平均数、第60百分位数和众数的大小关系是()A.平均数=第60百分位数>众数 B.平均数<第60百分位数=众数C.第60百分位数=众数<平均数 D.平均数=第60百分位数=众数8.函数的定义域为()A.B.且C.且D.9.已知向量和的夹角为,且,则A. B.C. D.10.若直线与直线互相垂直,则等于(

)A.1 B.-1C.±1 D.-2二、填空题:本大题共6小题,每小题5分,共30分。11.若,记,,,则P、Q、R的大小关系为______12.是第___________象限角.13.函数一段图象如图所示则的解析式为______14.已知圆锥的侧面展开图是一个半径为2的半圆,则这个圆锥的高是_______15.圆的半径是,弧度数为3的圆心角所对扇形的面积等于___________16.已知幂函数的图象过点,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是偶函数(1)求实数的值;(2)若函数的最小值为,求实数的值;(3)当为何值时,讨论关于的方程的根的个数18.设函数的定义域为,函数的定义域为(1)求;(2)若,求实数的取值范围19.如图,是半径为的半圆,为直径,点为的中点,点和点为线段的三等分点,平面外一点满足平面,=.(1)证明:;(2)求点到平面的距离.20.已知函数(为常数)是定义在上的奇函数.(1)求函数的解析式;(2)判断函数的单调性,并用定义证明;(3)若函数满足,求实数的取值范围.21.设是定义在上的偶函数,的图象与的图象关于直线对称,且当时,()求的解析式()若在上为增函数,求的取值范围()是否存在正整数,使的图象的最高点落在直线上?若存在,求出的值;若不存在,请说明理由

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】令,则可得,解出即可.【详解】令,其对称轴为,要使在上是增函数,则应满足,解得.故选:B.2、B【解析】根据象限角的定义及锐角、钝角及平角的大小逐一分析判断即可得解.【详解】解:为第一象限角,为第二象限角,故A错误;因为锐角,所以锐角一定是第一象限角,故B正确;因为钝角,平角,为第二象限角,故CD错误.故选:B.3、D【解析】根据题意求出b的范围可以判断A,然后结合基本不等式判断B,C,最后消元通过二次函数的角度判断D.【详解】对A,,正确;对B,,当且仅当时取“=”,正确;对C,,当且仅当时取“=”,正确;对D,由题意,,由A可知,所以,错误.故选:D.4、D【解析】利用不等式的性质逐个检验即可得到答案.【详解】A,a>b且c∈R,当c小于等于0时不等式不成立,故错误;Ba,b,c∈R,且a>b,可得a﹣b>0,当c=0时不等式不成立,故错误;,C,举反例,a=2,b=-1满足a>b,但不满足,故错误;D,将不等式化简即可得到a>b,成立,故选D.【点睛】本题主要考查不等式的性质以及排除法的应用,属于简单题.用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法.若结果为定值,则可采用此法.特殊法是“小题小做”的重要策略.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等5、B【解析】利用函数是偶函数,可得,解出.再利用二次函数的单调性即可得出单调区间【详解】解:函数是偶函数,,,化为,对于任意实数恒成立,,解得;,利用二次函数的单调性,可得其单调递增区间为故选:B【点睛】本题考查函数的奇偶性和对称性的应用,熟练掌握函数的奇偶性和二次函数的单调性是解题的关键.6、C【解析】由奇偶性可知的区间单调性及,画出函数草图,由函数不等式及函数图象求解集即可.【详解】根据题意,偶函数在上单调递减且,则在上单调递增,且函数的草图如图,或,由图可得-2<x<0或x>2,即不等式的解集为故选:C7、B【解析】从数据为20,30,40,50,50,50,70,80中计算出平均数、第60百分位数和众数,进行比较即可.【详解】解:平均数为,,第5个数50即为第60百分位数.又众数为50,它们的大小关系是平均数第60百分位数众数.故选:B.8、C【解析】根据给定函数有意义直接列出不等式组,解不等式组作答.【详解】依题意,,解得且,所以的定义域为且.故选:C9、D【解析】根据数量积的运算律直接展开,将向量的夹角与模代入数据,得到结果【详解】=8+3-18=8+3×2×3×-18=-1,故选D.【点睛】本题考查数量积的运算,属于基础题10、C【解析】分类讨论:两条直线的斜率存在与不存在两种情况,再利用相互垂直的直线斜率之间的关系即可【详解】解:①当时,利用直线方程分别化为:,,此时两条直线相互垂直②如果,两条直线的方程分别为与,不垂直,故;③,当时,此两条直线的斜率分别为,两条直线相互垂直,,化为,综上可知:故选【点睛】本题考查了相互垂直的直线斜率之间的关系、分类讨论思想方法,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用平方差公式和同角三角函数的平方关系可得P、R的关系,然后作差,因式分解,结合已知可判断P、Q的大小关系.【详解】又因为,所以所以,即所以P、Q、R的大小关系为.故答案为:12、三【解析】根据给定的范围确定其象限即可.【详解】由,故在第三象限.故答案为:三.13、【解析】由函数的最值求出A,由周期求出,由五点法作图求出的值,从而得到函数的解析式【详解】由函数的图象的顶点的纵坐标可得,再由函数的周期性可得,再由五点法作图可得,故函数的解析式为,故答案为【点睛】本题主要考查函数的部分图象求解析式,由函数的最值求出A,由周期求出,由五点法作图求出的值,属于中档题14、【解析】设圆锥的母线为,底面半径为则因此圆锥的高是考点:圆锥的侧面展开图15、【解析】根据扇形的面积公式,计算即可.【详解】由扇形面积公式知,.【点睛】本题主要考查了扇形的面积公式,属于容易题.16、【解析】由幂函数的解析式的形式可求出和的值,再将点代入可求的值,即可求解.【详解】因为是幂函数,所以,,又的图象过点,所以,解得,所以.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)当时,方程有一个根;当时,方程没有根;当或或时,方程有两个根;当时,方程有三个根;当时,方程有四个根【解析】(1)利用偶函数满足,求出的值;(2)对函数变形后利用二次函数的最值求的值;(3)定义法得到的单调性,方程通过换元后得到的根的情况,通过分类讨论最终求出结果.【小问1详解】由题意得:,即,所以,其中,∴,解得:【小问2详解】,∴,故函数的最小值为,令,故的最小值为,等价于,解得:或,无解综上:【小问3详解】由,令,,有由,有,,可得,可知函数为增函数,故当时,函数单调递增,由函数为偶函数,可知函数的增区间为,减区间为,令,有,方程(记为方程①)可化为,整理为:(记为方程②),,当时,有,此时方程②无解,可得方程①无解;当时,时,方程②的解为,可得方程①仅有一个解为;时,方程②的解为,可得方程①有两个解;当时,可得或,1°当方程②有零根时,,此时方程②还有一根为,可得此时方程①有三个解;2°当方程②有两负根时,可得,不可能;3°当方程②有两正根时,可得:,又由,可得,此时方程①有四个根;4°当方程②有一正根一负根时,,可得:或,又由,可得或,此时方程①有两个根,由上知:当时,方程①有一个根;当时,方程①没有根;当或或时,方程①有两个根;当时,方程①有三个根;当时,方程①有四个根【点睛】对于复合函数根的个数问题,要用换元法来求解,通常方法会用到根的判别式,导函数,基本不等式等.18、(1);(2).【解析】(1)由题知,即得;(2)根据,得,即求.【小问1详解】由题知,解得:,∴.【小问2详解】由题知,若,则,,实数的取值范围是.19、(1)证明见解析(2)【解析】本题主要考查直线与平面、点到面的距离,考查空间想象能力、推理论证能力(1)证明:∵点E为的中点,且为直径∴,且∴∵FC∩AC=C∴BE⊥平面FBD∵FD∈平面FBD∴EB⊥FD(2)解:∵,且∴又∵∴∴∵∴∵∴∴∴点到平面的距离点评:立体几何问题是高考中的热点问题之一,从近几年高考来看,立体几何的考查的分值基本是20分左右,其中小题一两题,解答题20、(1)(2)在上单调递减,证明见解析(3)【解析】(1)依题意可得,即可得到方程,解得即可;(2)首先判断函数的单调性,再根据定义法证明,按照设元、作差、变形、判断符号、下结论的步骤完成即可;(3)根据函数的奇偶性与单调性将函数不等式转化为自变量的不等式,再解得即可;【小问1详解】解:因为是定义在上的奇函数,所以,即,即,所以,即;解得,所以【小问2详解】解:函数是上的减函数证明:在上任取,,设,因为,所以,则,所以即所以在上单调递减【小问3详解】解:因为是定义在上奇函数所以可化为又在上单调递减,所以解得21、(1);(2);(3)见解析.【解析】分析:()当时,,;当时,,从而可得结果;()由题设知,对恒成立,即对恒成立,于是,,从而;()因为为偶函数,故只需研究函数在的最大值,利用导数研究函数的单调性,讨论两种情况,即可筛选出符合题意的正整数.详解:()当时,,;当时,,∴,()由题设知,对恒成立,即对恒成立,于是,,从而()因为为偶函数,故只

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论