版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省志诚实验学校2026届高一上数学期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.二次函数中,,则函数的零点个数是A.个 B.个C.个 D.无法确定2.函数的零点所在区间是()A. B.C. D.3.若,则下列不等式中,正确的是()A. B.C. D.4.在同一直角坐标系中,函数的图像可能是()A. B.C. D.5.“”是“幂函数在上单调递增”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.的值为()A. B.1C. D.27.设m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是A.若,,则B.若,,,则C.若,,则D.若,,,则8.一个孩子的身高与年龄(周岁)具有相关关系,根据所采集的数据得到线性回归方程,则下列说法错误的是()A.回归直线一定经过样本点中心B.斜率的估计值等于6.217,说明年龄每增加一个单位,身高就约增加6.217个单位C.年龄为10时,求得身高是,所以这名孩子的身高一定是D.身高与年龄成正相关关系9.下列结论中正确的是A.若角的终边过点,则B.若是第二象限角,则为第二象限或第四象限角C.若,则D.对任意,恒成立10.A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.二次函数的部分对应值如下表:342112505则关于x不等式的解集为__________12.某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量(微克)与时间(时)之间近似满足如图所示的图象.据进一步测定,每毫升血液中含药量不少于0.25微克时,治疗疾病有效,则服药一次治疗疾病有效的时间为___________小时.13.若,且α为第一象限角,则___________.14.已知一个圆锥的母线长为1,其高与母线的夹角为45°,则该圆锥的体积为____________.15.已知为角终边上一点,且,则______16.已知为第二象限角,且,则_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)解不等式f(x)>2x+5.18.设,,已知,求a的值.19.已知是第二象限,且,计算:(1);(2)20.已知角的终边经过点(1)求的值;(2)求的值21.已知二次函数.(1)若为偶函数,求在上的值域:(2)若时,的图象恒在直线的上方,求实数a的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】计算得出的符号,由此可得出结论.【详解】由已知条件可得,因此,函数的零点个数为.故选:C.2、B【解析】判断函数的单调性,根据函数零点存在性定理即可判断.【详解】函数的定义域为,且函数在上单调递减;在上单调递减,所以函数为定义在上的连续减函数,又当时,,当时,,两函数值异号,所以函数的零点所在区间是,故选:B.3、C【解析】利用不等式的基本性质判断.【详解】由,得,即,故A错误;则,则,即,故B错误;则,,所以,故C正确;则,所以,故D错误;故选:C4、D【解析】通过分析幂函数和对数函数的特征可得解.【详解】函数,与,答案A没有幂函数图像,答案B.中,中,不符合,答案C中,中,不符合,答案D中,中,符合,故选D.【点睛】本题主要考查了幂函数和对数函数的图像特征,属于基础题.5、A【解析】由幂函数的概念,即可求出或,再根据或均满足在上单调递增以及充分条件、必要条件的概念,即可得到结果.【详解】若为幂函数,则,解得或,又或都满足在上单调递增故“”是“幂函数在上单调递增”的充分不必要条件故选:A.6、B【解析】根据正切的差角公式逆用可得答案【详解】,故选:B7、C【解析】根据空间中直线与平面,平面与平面的位置关系即得。【详解】A.因为垂直于同一平面的两个平面可能平行或相交,不能确定两平面之间是平行关系,故不正确;B.若,,,则或相交,故不正确;C.由垂直同一条直线的两个平面的关系判断,正确;D.若,,,则或相交,故不正确.故选:C【点睛】本题考查空间直线和平面,平面和平面的位置关系,考查学生的空间想象能力。8、C【解析】利用线性回归方程过样本中心点可判断A;由回归方程求出的数值是估计值可判断B、C;根据回归方程的一次项系数可判断D;【详解】对于A,线性回归方程一定过样本中心点,故A正确;对于B,由于斜率是估计值,可知B正确;对于C,当时,求得身高是是估计值,故C错误;对于D,线性回归方程的一次项系数大于零,故身高与年龄成正相关关系,故D正确;故选:C【点睛】本题考查了线性回归方程的特征,需掌握这些特征,属于基础题.9、D【解析】对于A,当时,,故A错;对于B,取,它是第二象限角,为第三象限角,故B错;对于C,因且,故,所以,故C错;对于D,因为,所以,所以,故D对,综上,选D点睛:对于锐角,恒有成立10、A【解析】,选A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据所给数据得到二次函数的对称轴,即可得到,再根据函数的单调性,即可得解;【详解】解:∵,∴对称轴为,∴,又∵在上单调递减,在上单调递增,∴的解集为故答案为:12、【解析】根据图象先求出函数的解析式,然后由已知构造不等式0.25,解不等式可得每毫升血液中含药量不少于0.25微克的起始时刻和结束时刻,他们之间的差值即为服药一次治疗疾病有效的时间【详解】解:当时,函数图象是一个线段,由于过原点与点,故其解析式为,当时,函数的解析式为,因为在曲线上,所以,解得,所以函数的解析式为,综上,,由题意有,解得,所以,所以服药一次治疗疾病有效的时间为个小时,故答案为:.13、【解析】先求得,进而可得结果.【详解】因为,又为第一象限角,所以,,故.故答案为:.14、##【解析】由题可得,然后利用圆锥的体积公式即得.【详解】设圆锥的底面半径为r,高为h,由圆锥的母线长为1,其高与母线的夹角为45°,∴,∴该圆锥的体积为.故答案为:.15、##【解析】利用三角函数定义可得:,即可求得:,再利用角的正弦、余弦定义计算得解【详解】由三角函数定义可得:,解得:,则,所以,,.故答案为:.16、【解析】根据同角三角函数关系结合诱导公式计算得到答案.【详解】为第二象限角,且,故,.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)设二次函数f(x)=ax2+bx+c,利用待定系数法即可求出f(x);(2)利用一元二次不等式的解法即可得出【详解】(1).设二次函数f(x)=ax2+bx+c,∵函数f(x)满足f(x+1)﹣f(x)=2x,f(x+1)-f(x)=-=2ax+a+b=2x,解得.且f(0)=1.c=1∴f(x)=x2﹣x+1(2)不等式f(x)>2x+5,即x2﹣x+1>2x+5,化为x2﹣3x﹣4>0化为(x﹣4)(x+1)>0,解得x>4或x<﹣1∴原不等式的解集为【点睛】本题考查了用待定系数法求二次函数的解析式和一元二次不等式的解法,熟练掌握其方法是解题的关键,属于中档题.18、-3【解析】根据,分和,讨论求解.【详解】解:因为,,且,所以当时,解得,此时,不符合题意;当时,解得或,若,则,不成立;若,则,成立;所以a的值为-3.19、(1);(2).【解析】(1)首先根据诱导公式化简,再上下同时除以后,转化为正切表示的式子,求值;(2)首先利用诱导公式化简,再转化为齐次分式形式,转化为正切求值.【详解】(1)原式,上下同时除以后,得;(2)原式,上下同时除以后,得20、(1),,;(2).【解析】(1)直接利用三角函数的坐标定义求解;(2)化简,即得解.【小问1详解】解:,有,,;【小问2详解】解:,将代入,可得21、(1);(2)【解析】(1)函数为二次函数,其对称轴为.由f(x)为偶函数,可得a=2,再利用二次函数的单调性求出函数f(x)在[−1,2]上的值域;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年中国家用微型锅炉行业市场规模及投资前景预测分析报告
- 基干民兵协议书
- 航空公司高级乘务长面试题及答案
- 社群年终营销方案(3篇)
- 工程水泥合同范本
- 家电维保合同范本
- 宣传供热合同范本
- 宠粮销售合同范本
- 广告模特合同范本
- 2026届江西省赣州市十四县高三语文第一学期期末复习检测试题含解析
- 2025年山西省朔州市公安辅警招聘知识考试题(含答案)
- 湿疹患者护理查房
- 2025至2030中国融媒体行业市场深度分析及前景趋势与投资报告
- 2026年江苏农牧科技职业学院单招职业技能测试模拟测试卷附答案
- 2026年南京交通职业技术学院单招职业倾向性测试题库附答案
- 2025吐鲁番市高昌区招聘第二批警务辅助人员(165人)笔试考试参考试题及答案解析
- 江苏省徐州市2026届九年级上学期期末模拟数学试卷
- 癫痫常见症状及护理培训课程
- 2025年南阳市公安机关招聘看护队员200名笔试考试参考试题及答案解析
- 产后康复健康促进干预方案
- 2024年人民法院聘用书记员考试试题及答案
评论
0/150
提交评论