2026届吉林省梅河口市博文中学高二上数学期末联考试题含解析_第1页
2026届吉林省梅河口市博文中学高二上数学期末联考试题含解析_第2页
2026届吉林省梅河口市博文中学高二上数学期末联考试题含解析_第3页
2026届吉林省梅河口市博文中学高二上数学期末联考试题含解析_第4页
2026届吉林省梅河口市博文中学高二上数学期末联考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届吉林省梅河口市博文中学高二上数学期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.金刚石的成分为纯碳,是自然界中天然存在的最坚硬物质,它的结构是由8个等边三角形组成的正八面体.若某金刚石的棱长为2,则它的体积为()A. B.C. D.2.命题“对任意,都有”的否定是()A.对任意,都有 B.存在,使得C.对任意,都有 D.存在,使得3.过抛物线()的焦点作斜率大于的直线交抛物线于,两点(在的上方),且与准线交于点,若,则A. B.C. D.4.某四面体的三视图如图所示,该四面体的体积为()A. B.C. D.5.已知圆,为圆外的任意一点,过点引圆的两条切线、,使得,其中、为切点.在点运动的过程中,线段所扫过图形的面积为()A. B.C. D.6.一道数学试题,甲、乙两位同学独立完成,设命题是“甲同学解出试题”,命题是“乙同学解出试题”,则命题“至少一位同学解出试题”可表示为()A. B.C. D.7.已知直线与垂直,则为()A.2 B.C.-2 D.8.执行如图所示的算法框图,则输出的结果是()A. B.C. D.9.在数列中,,,则()A. B.C. D.10.椭圆C:的焦点为,,点P在椭圆上,若,则的面积为()A.48 B.40C.28 D.2411.若圆与直线相切,则()A.3 B.或3C. D.或12.若直线与直线垂直,则()A.6 B.4C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,,若为等差数列,则___________,若,则数列的前项和为___________.14.(建三江)函数在处取得极小值,则=___15.空间四边形中,,,,,,,则与所成角的余弦值等于___________16.若圆柱的高、底面半径均为1,则其表面积为___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设椭圆的焦距为,原点到经过两点的直线的距离为.(1)求椭圆的离心率;(2)如图所示,是圆的一条直径,若椭圆经过两点,求椭圆的标准方程18.(12分)设函数,其中是自然对数的底数,.(1)若,求的最小值;(2)若,证明:恒成立.19.(12分)设函数(Ⅰ)求的单调区间;(Ⅱ)若,为整数,且当时,恒成立,求的最大值.(其中为的导函数.)20.(12分)已知动圆过点且动圆内切于定圆:记动圆圆心的轨迹为曲线.(1)求曲线方程;(2)若、是曲线上两点,点满足求直线的方程.21.(12分)已知点,,线段是圆的直径.(1)求圆的方程;(2)过点的直线与圆相交于,两点,且,求直线的方程.22.(10分)如图,在四棱锥中,平面平面ABCD,底面ABCD是矩形,,,直线PA与CD所成角为60°.(1)求直线PD与平面ABCD所成角的正弦值;(2)求二面角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由几何关系先求出一个正四面体的高,再结合锥体体积公式即可求解正八面体的体积.【详解】如图,设底面中心为,连接,由几何关系知,,则正八面体体积为.故选:C2、B【解析】根据全称命题的否定是特称命题形式,可判断正确答案.【详解】因为全称命题的否定是特称命题,所以命题“对任意,都有”的否定是“存在,使得”故选:B.3、A【解析】分别过作准线的垂线,垂足分别为,设,则,,故选A.4、A【解析】可由三视图还原原几何体,然后根据题意的边角关系,完成体积的求解.【详解】由三视图还原原几何体如图:其中平面,,则该四面体的体积为.故选:A.5、D【解析】连接、、,分析可知四边形为正方形,求出点的轨迹方程,分析可知线段所扫过图形为是夹在圆和圆的圆环,利用圆的面积公式可求得结果.【详解】连接、、,由圆的几何性质可知,,又因为且,故四边形为正方形,圆心,半径为,则,故点的轨迹方程为,所以,线段扫过的图形是夹在圆和圆的圆环,故在点运动的过程中,线段所扫过图形的面积为.故选:D.6、D【解析】根据“或命题”的定义即可求得答案.【详解】“至少一位同学解出试题”的意思是“甲同学解出试题,或乙同学解出试题”.故选:D.7、A【解析】利用一般式中直线垂直的系数关系列式求解.【详解】因为直线与垂直,故选:A.8、B【解析】列举出循环的每一步,利用裂项相消法可求得输出结果.【详解】第一次循环,不成立,,;第二次循环,不成立,,;第三次循环,不成立,,;以此类推,最后一次循环,不成立,,.成立,跳出循环体,输出.故选:B.9、A【解析】根据已知条件,利用累加法得到的通项公式,从而得到.【详解】由,得,所以,所以.故选:A.10、D【解析】根据给定条件结合椭圆定义求出,再判断形状计算作答.【详解】椭圆C:的半焦距,长半轴长,由椭圆定义得,而,且,则有是直角三角形,,所以的面积为24.故选:D11、B【解析】根据圆与与直线相切,利用圆心到直线的距离等于半径求解.【详解】圆的标准方程为:,则圆心为,半径为,因为圆与与直线相切,所以圆心到直线的距离等于半径,即,解得或,故选:B12、A【解析】由两条直线垂直的条件可得答案.【详解】由题意可知,即故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、①.##②.【解析】利用递推关系式,结合等差数列通项公式可求得公差,进而得到;利用递推关系式可知数列的奇数项和偶数项分别成等差数列,采用裂项相消的方法可求得前项和.【详解】由得:,解得:;为等差数列,设其公差为,则,解得:,;由知:数列的奇数项是以为首项,为公差的等差数列;偶数项是以为首项,为公差的等差数列;,又,,数列的前项和,.故答案为:;.【点睛】关键点点睛:本题考查根据数列递推关系求解数列中的项、裂项相消法求和的问题;解题关键是能够根据递推关系式得到数列的奇数项和偶数项分别成等差数列,由此可通过裂项相消的方法求得所求数列的和.14、【解析】由,令,解得或,且时,;时,;时,,所以当时,函数取得极小值考点:导数在函数中的应用;极值的条件15、【解析】计算出的值,利用空间向量的数量积可得出的值,即可得解.【详解】,,所以,,所以,.所以,与所成角的余弦值为.故答案为:.16、【解析】根据圆柱表面积公式求解即可.【详解】根据题意得到圆柱的高,底面半径,则表面积.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据题意得,进而求解离心率即可;(2)根据题意得圆心是线段的中点,且,易知斜率存在,设其直线方程为,再结合韦达定理及弦长公式求解即可.【小问1详解】解:过点的直线方程为,∴原点到直线的距离,由,得,解得离心率.【小问2详解】解:由(1)知,椭圆的方程为.依题意,圆心是线段的中点,且.易知,不与轴垂直,设其直线方程,联立,得.设,则,.由,得,解得.所以.于是.由,得,解得.故椭圆的方程为.18、(1)(2)证明见解析【解析】(1)当时,,求出,可得答案;(2)设,,,,,设,求出利用单调性可得答案.【小问1详解】当时,,则,所以单调递增,又,当时,,单调递减,当时,,单调递增,所以.【小问2详解】设,若,则,若,则,设,则,所以单调递增,又,当时,,上单调递减,当时,,单调递增,所以,所以,综上,恒成立.【点睛】本题考查了求函数值域或最值的问题,一般都需要通过导数研究函数的单调性、极值、最值来处理,特别的要根据所求问题,适时构造恰当的函数,再利用所构造函数的单调性、最值解决问题是常用方法,考查了学生分析问题、解决问题的能力.19、(Ⅰ)答案见解析;(Ⅱ).【解析】(Ⅰ)的定义域为,,分和两种情况解不等式和即可得单调递增区间和单调递减区间;(Ⅱ)由题意可得对于恒成立,分离可得,令,只需,利用导数求最小值即可求解.【详解】(Ⅰ)函数的定义域为,当时,对于恒成立,此时函数在上单调递增;当时,由可得;由可得;此时在上单调递减,在上单调递增;综上所述:当时,函数的单调递增区间为,当时,单调递减区间为,单调递增区间为,(Ⅱ)若,由可得,因为,所以,所以所以对于恒成立,令,则,,令,则对于恒成立,所以在单调递增,因为,,所以在上存在唯一零点,即,可得:,当时,,则,当时,,则,所以在上单调递减,在上单调递增,所以,因为,所以的最大值为.【点睛】方法点睛:利用导数研究函数单调性的方法:(1)确定函数的定义域;求导函数,由(或)解出相应的的范围,对应的区间为的增区间(或减区间);(2)确定函数的定义域;求导函数,解方程,利用的根将函数的定义域分为若干个子区间,在这些子区间上讨论的正负,由符号确定在子区间上的单调性.20、(1);(2).【解析】(1)根据两圆内切,以及圆过定点列式求轨迹方程;(2)利用重心坐标公式可知,,再设直线的方程为与椭圆方程联立,利用根与系数的关系求解直线方程.【详解】(1)由已知可得,两式相加可得则点的轨迹是以、为焦点,长轴长为的椭圆,则因此曲线的方程是(2)因为,则点是的重心,易得直线的斜率存在,设直线的方程为,联立消得:且①②由①②解得则直线的方程为即【点睛】本题考查直线与椭圆的问题关系,本题的关键是根据求得,.21、(1);(2)或.【解析】(1)AB两点的中点为圆心,AB两点距离的一半为半径;(2)分斜率存在和不存在,根据垂径定理即可求解.【小问1详解】已知点,,线段是圆M的直径,则圆心坐标为,∴半径,∴圆的方程为;【小问2详解】由(1)可知圆的圆心,半径为.设为中点,则,,则.当的斜率不存在时,的方程为,此时,符合题意;当的斜率存在时,设的方程为,即kx-y+2=0,则,解得,故直线的方程为,即.综上,直线的方程为或.22、(1)(2)【解析】(1),所以PA与AB所成的锐角或直角等于PA与CD所成角,然后过P在平面PAB内作,可得平面ABCD,从而可求出答案.(2)可证平面PAB,过B在平面PAB内作,连结CF,则是二面角的平面角,从而可求解.【小问1详解】因为,所以PA与A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论